|
长输管道单侧双主缆式悬索跨越塔顶锚固装置的设计研究
|
Abstract:
在长输油气管道悬索跨越形式中,当设计荷载较大而采用大直径主缆时,将单根大直径主缆均分为两根截面较小的主缆,可极大地提高运输和安装效率,为了解决主塔塔顶单侧双主缆的连接和锚固问题,设计了一种用于同时锚固边跨和主跨双主缆的新型锚固装置,成功在单侧双主缆式悬索跨越中进行应用,并采用大型通用有限元软件ABAQUS对锚固装置进行仿真模拟分析,对结构安全性进行了计算和研究。结果表明:采用不同截面和型号板材设计的主缆–主塔锚固装置可彻底解决双主缆锚固和连接问题,其与塔顶的焊接连接方式,也能够在一定程度上解决设置单独索鞍存在的滑移问题;当主缆达到其破断力时,锚固装置两边弧形纵向连接板及中间纵向连接板的端部锚固位置处的应力最大,但小于锚固装置选材的极限屈服强度,锚固装置的设计结构合理,安全性能够达到使用要求,装置与主缆锚具连接处的挡板是设计考虑的重点。
In the form of suspension cable span of oil and gas pipeline, when the design load is large and the large diameter main cable is adopted; the single large diameter main cable is divided into two main cables with small cross section, which can greatly improve the transportation and installation efficiency. In order to solve the connection and anchoring problem of the single side and double main cable at the top of the main tower, a new type of anchoring device for simultaneously anchoring the double main cable is designed. The anchoring device is simulated and analyzed by using the large-scale general finite element software ABAQUS. The results show that the design of the main cable-main tower anchoring device can completely solve the main cable anchoring and connection problems of the main span and side span, and the welding connection mode with the tower top can also solve the slip problem of the single cable saddle to a certain extent. When the main cable reaches its breaking force, the stress at the end of the arc longitudinal connection plate and the middle longitudinal connection plate on both sides of the anchoring device is the largest, but it is smaller than the ultimate yield strength of the material selection of the device. The design structure of the anchoring device is reasonable and the safety can meet the requirements of use. The baffle plate at the connection between the device and the anchor of the main cable is the key point of design consideration.
[1] | 蔡伟民. 乌江管道悬索桥施工控制研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2014. |
[2] | 张勤, 詹胜文. 中贵管道乌江悬索跨越主缆的施工控制[J]. 油气储运, 2016, 35(6): 657-662. |
[3] | 王学军. 预应力技术在中缅天然气管道跨越施工中的应用[J]. 天然气工业, 2014, 34(12): 113-117. |
[4] | 高河东, 祁志江, 任金玲, 等. 川气东送管道野三河跨越方案比选与实施[J]. 油气储运, 2011, 30(6): 445-448. |
[5] | 陈利琼, 刘洋, 吴世娟, 等. 澜沧江跨越管道的落实冲击影响与防护[J]. 天然气工业, 2019, 39(1): 125-130. |
[6] | 周学深, 杨泽亮, 韩鹏. 天然气长输管道通过高填方规划道路区的整治设计[J]. 天然气工业, 2014, 34(12): 118-122. |
[7] | 曹水亮, 石秀山. 基于ABAQUS的蒸汽管道应力分析[J]. 管道技术与设备, 2017(2): 7-9. |
[8] | 王光明, 萧岩. 汽车荷载对管道的作用标准值计算分析[J]. 特种结构, 2007, 24(3): 45-48. |
[9] | 郑聪, 马保松. 基于ABAQUS的顶管施工中钢管稳定性分析[J]. 给水排水, 2016, 42(4): 99-103. |
[10] | 陈锦裕, 王佳, 曾多. PE80聚乙烯管道焊接接头的应力松弛模型验证及安全评价[J]. 中国塑料, 2018, 32(6): 112-118. |
[11] | 杨海军, 张爱林. 基于Von Mises应力的预应力钢结构拓扑优化设计[J]. 北京工业大学学报, 2010, 36(4): 475-481. |
[12] | 金奕山, 李琳. 随机振动载荷作用下结构Von Mises应力过程的研究[J]. 应用力学学报, 2004, 21(3): 13-16. |
[13] | 罗文波, 罗中华, 彭炎荣. Mises准则的圆形屈服轨迹及其在板料成形中的应用[J]. 锻压技术, 1999, 24(6): 23-27. |
[14] | 罗旗帜, 彭爱勤, 陈玉骥. 石湾特大桥矮塔索鞍区局部应力分析[J]. 佛山科学技术学报(自然科学版), 2010, 28(6): 13-17. |