全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HCN通道在突触传递和可塑性中的作用研究进展
Review of Research Progress on HCN Channels in the Synaptic Transmission and Plasticity

DOI: 10.12677/IJPN.2020.93007, PP. 53-59

Keywords: 超极化激活环核苷酸门控离子通道,长时程增强,长时程抑制,神经疾病
Hyperpolarization-Activated and Cyclic Nucleotide-Gated Channels
, Long-Term Potentiation, Long-Term Depression, Nervous Diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

超极化激活环核苷酸门控(HCN)离子通道分布于神经组织中,在不同类型的神经元中表达丰富,在调控细胞膜兴奋性等方面发挥重要作用。HCN通道广泛参与了神经元的突触传递和可塑性变化以及中枢神经系统疾病的病理生理过程。HCN通道已成为慢性疼痛及一些神经系统疾病的潜在治疗靶点。本文将重点围绕HCN通道在突触传递和可塑性中的作用及其调节机制进行综述。
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, distributed in nervous tis-sues and highly expressed in different neurons, have important roles in modulating neuronal ex-citability. HCN channels are widely involved in the changes of synaptic transmission and plasticity and pathophysiological process of specific nervous diseases. HCN channels seem to be promising targets for specific nervous diseases as well as chronic pain. In this review, we summarized the roles of HCN channels on the synaptic transmission and plasticity with their regulatory factors.

References

[1]  Tibbs, G.R., Posson, D.J. and Goldstein, P.A. (2016) Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends in Pharmacological Sciences, 37, 522-542.
https://doi.org/10.1016/j.tips.2016.05.002
[2]  Ramakrishnan, N.A., Drescher, M.J., Khan, K.M., Hatfield, J.S. and Drescher, D.G. (2012) HCN1 and HCN2 Proteins Are Expressed in Cochlear Hair Cells: HCN1 Can Form a Ternary Complex with Protocadherin 15 CD3 and F-Actin- Binding Filamin A or Can Interact with HCN2. The Journal of Biological Chemistry, 287, 37628-37646.
https://doi.org/10.1074/jbc.M112.375832
[3]  L?mo, T. (2018) Discovering Long-Term Potentiation (LTP)-Recollections and Reflections on What Came after. Acta Physiologica, 222, e12921.
https://doi.org/10.1111/apha.12921
[4]  Pinar, C., Fontaine, C.J., Trivi?o-Paredes, J., Lottenberg, C.P., Gil-Mohapel, J. and Christie, B.R. (2017) Revisiting the Flip Side: Long-Term Depression of Synaptic Efficacy in the Hippocampus. Neuroscience & Biobehavioral Reviews, 80, 394-413.
https://doi.org/10.1016/j.neubiorev.2017.06.001
[5]  Ko, K.W., Rasband, M.N., Meseguer, V., Kramer, R.H. and Golding, N.L. (2016) Serotonin Modulates Spike Probability in the Axon Initial Segment through HCN Channels. Nature Neuroscience, 19, 826-834.
https://doi.org/10.1038/nn.4293
[6]  Weng, X., Smith, T., Sathish, J. and Djouhri, L. (2012) Chronic Inflammatory Pain Is As-sociated with Increased Excitability and Hyperpolarization-Activated Current (Ih) in C—But Not Aδ-Nociceptors. Pain, 153, 900-914.
https://doi.org/10.1016/j.pain.2012.01.019
[7]  Shah, M.M. (2016) Hyperpolarization-Activated Cyclic Nucleotide-Gated Chan-nel Currents in Neurons. Cold Spring Harbor Protocols, 7, 10.
https://doi.org/10.1101/pdb.top087346
[8]  Mellor, J., Nicoll, R.A. and Schmitz, D. (2002) Mediation of Hippocampal Mossy Fiber Long-Term Potentiation by Presynaptic Ih Channels. Science, 295, 143-147.
https://doi.org/10.1126/science.1064285
[9]  Chen, C. (2004) ZD7288 Inhibits Postsynaptic Glutamate Recep-tor-Mediated Responses at Hippocampal Perforant Path-Granule Cell Synapses. European Journal of Neuroscience, 19, 643-649.
https://doi.org/10.1111/j.0953-816X.2003.03174.x
[10]  He, W., Cheng, Z., Fu, G., Xu, X., Lu, Q. and Guo, L. (2010) ZD7288-Induced Suppression of Long-Term Potentiation Was Attenuated by Exogenous NMDA at the Schaffer Collateral-CA1 Syn-apse in the Rat in Vivo. European Journal of Pharmacology, 631, 10-16.
https://doi.org/10.1016/j.ejphar.2009.12.038
[11]  Li, C.J., Lu, Y., Zhou, M., Zong, X.G., Li, C., Xu, X.L., Guo, L.J. and Lu, Q. (2014) Activation of GABAB Receptors Ameliorates Cog-nitive Impairment via Restoring the Balance of HCN1/HCN2 Surface Expression in the Hippocampal CA1 Area in Rats with Chronic Cerebral Hypoperfusion. Molecular Neurobiology, 50, 704-720.
https://doi.org/10.1007/s12035-014-8736-3
[12]  He, W., Xu, X., Lv, Q. and Guo, L. (2014) Low Dose ZD7288 Attenuates the Ischemia/Reperfusion-Induced Impairment of Long-Term Potentiation Induction at Hippocampal Schaffer Collateral-CA1 Synapses. Cellular and Molecular Neurobiology, 34, 611-617.
https://doi.org/10.1007/s10571-014-0047-8
[13]  Maroso, M., Szabo, G.G., Kim, H.K., et al. (2016) Cannabinoid Control of Learning and Memory through HCN Channels. Neuron, 89, 1059-1073.
https://doi.org/10.1016/j.neuron.2016.01.023
[14]  Magee, J.C. (1999) Dendritic Ih Normalizes Temporal Summation in Hippo-campal CA1 Neurons. Nature Neuroscience, 2, 848.
https://doi.org/10.1038/12229
[15]  Chevaleyre, V. and Castillo, P.E. (2002) Assessing the Role of Ih Channels in Synaptic Transmission and Mossy Fiber LTP. Proceedings of the National Academy of Sciences of the United States of America, 99, 9538-9543.
https://doi.org/10.1073/pnas.142213199
[16]  Neitz, A., Mergia, E., Imbrosci, B., et al. (2014) Postsynaptic NO/cGMP Increases NMDA Receptor Currents via Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Hippocampus. Cerebral Cortex, 24, 1923-1936.
https://doi.org/10.1093/cercor/bht048
[17]  Matt, L., Michalakis, S., Hofmann, F., Hammelmann, V., Ludwig, A., Biel, M. and Kleppisch, T. (2011) HCN2 Channels in Local Inhibitory Interneurons Constrain LTP in the Hippocampal Direct Perforant Path. Cel-lular and Molecular Life Sciences, 68, 125-137.
https://doi.org/10.1007/s00018-010-0446-z
[18]  Li, S., He, Z., Guo, L., Huang, L., Wang, J. and He, W. (2010) Behavioral Alterations Associated with a Down Regulation of HCN1 mRNA in Hippocampal Cornus Ammon 1 Region and Neocortex after Chronic Incomplete Global Cerebral Ischemia in Rats. Neuroscience, 165, 654-661.
https://doi.org/10.1016/j.neuroscience.2009.10.053
[19]  Tsay, D., Dudman, J.T. and Siegelbaum, S.A. (2007) HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons. Neuron, 56, 1076-1089.
https://doi.org/10.1016/j.neuron.2007.11.015
[20]  Brager, D.H., Lewis, A.S., Chetkovich, D.M. and Johnston, D. (2013) Short- and Long-Term Plasticity in CA1 Neurons from Mice Lacking h-Channel Auxiliary Subunit TRIP8b. Journal of Neurophysiology, 110, 2350-2357.
https://doi.org/10.1152/jn.00218.2013
[21]  Guli, X., Tokay, T., Rohde, M., Bender, R.A., K?hling, R. and Kirschstein, T. (2012) ZD7288 Enhances Long-Term Depression at Early Postnatal Medial Perforant Path-Granule Cell Synapses. Neural Plasticity, 2012, Article ID: 237913.
https://doi.org/10.1155/2012/237913
[22]  Yang, Z. and Santamaria, F. (2016) Purkinje Cell Intrinsic Excita-bility Increases after Synaptic Long Term Depression. Journal of Neurophysiology, 116, 1208-1217.
https://doi.org/10.1152/jn.00369.2016
[23]  Arnold, E.C., McMurray, C., Gray, R. and Johnston, D. (2019) Epilepsy-Induced Reduction in HCN Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral, Hippocampal CA1 Neurons. eNeuro, 6, ENEURO.0036-19.
https://doi.org/10.1523/ENEURO.0036-19.2019
[24]  Ku, S.M. and Han, M.H. (2017) HCN Channel Targets for Novel Antidepressant Treatment. Neurotherapeutics, 14, 698-715.
https://doi.org/10.1007/s13311-017-0538-7
[25]  Paspalas, C.D., Wang, M. and Arnsten, A.F. (2013) Constellation of HCN Channels and cAMP Regulating Proteins in Dendritic Spines of the Primate Prefrontal Cortex: Potential Substrate for Working Memory Deficits in Schizophrenia. Cerebral Cortex, 23, 1643-1654.
https://doi.org/10.1093/cercor/bhs152
[26]  Chang, X., Wang, J., Jiang, H., Shi, L. and Xie, J. (2019) Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neuro-degenerative Diseases. Frontiers in Molecular Neuroscience, 12, 141.
https://doi.org/10.3389/fnmol.2019.00141
[27]  Stieglitz, M.S., Fenske, S., Hammelmann, V., et al. (2018) Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice. Frontiers in Molecular Neuroscience, 10, 436.
https://doi.org/10.3389/fnmol.2017.00436

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133