|
Pure Mathematics 2020
短正合列的性质
|
Abstract:
本文对链复形和链映射组成的短正合列进行研究。在短正合列上定义了同调序列的边缘同态,证明了它的合理性。利用链复形和链映射组成的短正合列和所定义的边缘同态,引出了正合同调序列和同调序列的自然性,并给出了证明。
In this paper, the short exact sequence composed of chain complex and chain mapping is studied. The edge homomorphism of homology sequence is defined and the proof of good definition is given. By using the short exact sequence composed of chain complex and chain map and the defined edge homomorphism, the naturalness of the positive congruent sequence and the homology sequence is derived and proved.
[1] | 姜伯驹. 同调论[M]. 北京: 北京大学出版社, 2006. |
[2] | Rotman, J.J. (2010) Advanced Modern Algebra: Second Edition. American Mathematical Society, Rhode Island. |
[3] | 陈家鼐. 环与模[M]. 北京: 北京师范学院出版社, 1989. |
[4] | Scott Osborne, M. (2000) Basic Homological Algebra. Springer-Verlag, New York. |
[5] | 赵春来, 徐明曜. 抽象代数[M]. 北京大学出版社, 2008. |