全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于第二次全国污染源普查的云南省县域尺度污染物排放空间格局
Spatial Pattern of Pollutant Emissions at the County Scale in Yunnan Province Based on the Second China Pollution Source Census

DOI: 10.12677/JLCE.2020.93017, PP. 159-168

Keywords: 第二次全国污染源普查,空间聚集,空间自相关性,热点分析
The Second China Pollution Source Census
, Spatial Aggregation, Spatial Autocorrelation, Hot Spot Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过采用GIS空间分析方法,以第二次全国污染源普查(简称“二污普”) SO2、NOX、COD、NH3-N的排放总量和排放强度为测度指标,对云南省县域尺度的污染物排放量及排放强度地理聚集特征进行分析。结果表明,(1) SO2、NOX排放总量和强度空间差异明显, COD、NH3-N排放总量和强度区域差异不明显。(2) 按Moran指数分析,云南省污染物排放的空间相关性显著,各类污染物的排放总量空间集聚显著性特征SO2 > COD > NH3-N > NOX,排放强度的聚集显著性特征为SO2 >NOX > COD > NH3-N。(3) SO2、NOX排放总量的热点区与冷点区的分布区域与排放量强度的分布规律总体一致,但昆明、玉溪、红河大部分区域由排放量的热点区变为排放强度的冷点区;COD、NH3-N排放总量和强度形成了多个热点片区,排放总量和排放强度空间分布格局出现明显倒置,昆明、曲靖、玉溪、红河绝大多数热点区域变为了冷点区,普洱、临沧、德宏由冷点区变为热点区。(4) 四类污染物排放总量和强度均主要呈低–低聚集状态,高–高状态的区域污染物排放的绝对差异大,同时存在一定比例的低–高,高–低区域。
By using the method of GIS spatial analysis, taking the total pollution amount and pollution inten-sity of SO2, NOX, COD and NH3-N in the Second China Pollution Source Census (The Second CPSC) as the measurement index, the geographical aggregation characteristics of the pollutant emissions and emission intensity at the county level in Yunnan Province were analyzed. The results show that: (1) The spatial difference of total amount and intensity of SO2 and NOX emission from waste gas is obvious, while the regional difference of total amount and intensity of COD and NH3-N emission from waste water is not obvious. (2) According to the Moran index analysis results, the spatial correlation of pollutant emission in Yunnan province is significant, the spatial aggregation significance of the total emission of various pollutants is SO2 > COD > NH3-N > NOX, and the aggregation significance characteristic of the emission intensity is SO2 >NOX > COD > NH3-N. (3) The hot-spot and cold-spot areas of the total emission of SO2 and NOX are generally consistent with the distribution of emission intensity, but most areas of Kunming, Yuxi and Honghe are changed from hot-spot areas to cold-spot areas. The total amount and intensity of wastewater COD and NH3-N emissions have formed multiple hot-spot areas, and the spatial distribution pattern of total discharge and intensity has obviously inverted, and most of the hot-spot areas in Kunming, Qujing, Yuxi, and Honghe have become cold-spot areas. Pu’er, Lincang and Dehong changed from cold-spots to hot-spots. (4) The total amount and intensity of the four types of pollutants are mainly in the low-low aggregation state, and the high-high state areas have great absolute

References

[1]  马丽梅, 张晓. 区域大气污染空间效应及产业结构影响[J]. 中国人口?资源与环境, 2014, 24(7): 157-164.
[2]  胡志强, 苗健铭, 苗长虹. 中国地市尺度工业污染的集聚特征与影响因素[J]. 地理研究, 2016, 35(8): 1470-1482.
[3]  周侃, 樊杰, 刘汉初. 环渤海地区水污染物排放的时空格局及其驱动因素[J]. 地理科学进展, 2017, 36(2): 171-181.
[4]  帕孜丽娅木?木力提江, 孜比布拉?司马义, 颉渊, 等. 新疆城镇化与生态环境耦合协调发展时空区域差异评价研究[J]. 环境污染与防治, 2017, 39(9): 1043-1047.
[5]  麻永建, 徐建刚. 基于ESDA的河南省区域经济差异的时空演变研究[J]. 软科学, 2006, 20(5): 51-54.
[6]  谢伟伟, 邓宏兵, 王楠. 地理邻近与技术邻近对区域创新的空间溢出效应研究[J]. 华东经济管理, 2019(7): 61-67.
[7]  杨蓉, 王淑云, 雷林, 等. 基于ESDA的省域空气污染空间特征研究[J]. 环境科学与管理, 2016, 41(12): 16-19.
[8]  徐烨. 基于聚类的农产品产地土壤重金属污染与企业空间分布关系研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019.
[9]  张羽威, 张昊哲. 新疆经济发展与水资源利用空间关联性研究[J]. 哈尔滨工业大学学报: 社会科学版, 2018, 20(2): 129-134.
[10]  国务院. 中华人民共和国国务院令第508号全国污染源普查条例[Z]. 2007-10-9.
[11]  国务院办公厅. 国务院办公厅关于印发第二次全国污染源普查方案的通知[EB/OL]. http://www.gov.cn/zhengce/content/2017-09/21/content_5226606.htm, 2017-9-21.
[12]  国务院第二次全国污染源普查领导小组办公室. 国务院办公厅关于印发第二次全国污染源普查方案的通知公室关于印发第二次全国污染源普查技术规定的通知[Z]. 北京, 2018.
[13]  Cliff, A. and Ord, J. (1981) Spatial Processes Modelels and Applications. Pion, Lodon.
[14]  Goodchild, M.F., Haining, R.P. and Wise, S. (1992) Integrating GIS and Spatial Data Analysis Is Problems and Possibilities. International Journal of Geographical Information Systems, 6, 407-423.
https://doi.org/10.1080/02693799208901923

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133