全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铝电解质高温熔盐输运特性与微观结构研究动态
Research Trends on the Transport Characteristics and Microstructure of High Temperature Molten Salt in Aluminum Electrolyte

DOI: 10.12677/MEng.2020.73020, PP. 137-146

Keywords: 铝电解质,离子结构,输运性质,第一性原理,分子动力学模拟
Aluminium Electrolyte
, Ionic Structure, Transport Properties, First Principles, Molecular Dynamics Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

电解质作为铝电解槽中的“血液”,其组分与特性变化直接影响着电解工艺的控制以及槽操作管理。因而,研究者针对铝电解质高温熔盐离子结构以及物理化学等宏观性质等方面进行了大量测试以及理论方法研究。本论文围绕铝电解质熔盐的输运特性,总结归纳当前的主要测试研究方法;同时,简要分析了熔体离子结构的主要研究方法,重点介绍了熔体离子结构与输运特性的理论计算方法,并提出相应建议。
As the “blood” in aluminum electrolytic cell, the composition and characteristic of electrolytes directly affect the control of electrolysis process and the operation and management of the tank. Therefore, researchers have carried out a lot of tests and theoretical studies on the ionic structure and macroscopic properties of high temperature molten salt. In this paper, the main testing and research methods are summarized based on the transport characteristics of molten salt. At the same time, the main research methods of melt ion structure are briefly analyzed, the theoretical calculation methods of ion structure and transport characteristics are mainly introduced, and corresponding suggestions are put forward.

References

[1]  World Aluminium. http://www.world-aluminium.org/statistics/primary-aluminium-production
[2]  Edwards, J.D., Taylor, C.S., Russell, A.S., et al. (1952) Electrical Conductivity of Molten Cryolite and Potassium, Sodium, and Lithium Chlorides. Journal of the Electrochemical Society, 99, 527-535.
https://doi.org/10.1149/1.2779646
[3]  Edwards, J.D., Taylor, C.S., Cosgrove, L.A. and Russell, A.S. (1953) Electrical Conductivity and Density of Molten Cryolite with Additives. Journal of the Electrochemical Society, 100, 508-512.
https://doi.org/10.1149/1.2780888
[4]  Yim, E.W. and Feinleib, M. (1957) Electrical Conductivity of Molten Fluorides. Journal of the Electrochemical Society, 104, 622-626.
https://doi.org/10.1149%2F1.2428429
[5]  Yim, E.W. and Feinleib, M. (1957) Electrical Conductivity of Molten Fluoride Sluoridesctivity of Molten Fluoridesl Cryolites, and Cryolite-Base Melts. Journal of the Electrochemical Society, 104, 626-630.
https://doi.org/10.1149/1.2428430
[6]  Wang, X.W., Peterson, R.D. and Tabereaux, A.T. (1992) Electrical Con-ductivity of Cryolitic Melts. In: Light Melts, Minerals, Metals & Materials Soc., Warrendale, 481-488.
[7]  王兆文, 胡宪伟, 高炳亮, 石忠宁. CVCC法测定冰晶石系熔盐电导率的应用研究[J]. 东北大学学报(自然科学版), 2006, 27(7): 786-789.
[8]  Grjotheim, W. 铝电解技术[M]. 邱竹贤, 王家庆, 刘海石, 等. 沈阳: 轻金属编辑部, 1997: 62-70.
[9]  Dedyukhin, A., Apisarov, A., Tinghzev, P., et al. (2011) Electrical Conductivity of the KF-NaF-AlF3 Molten System at Low Cryolite Ratio with CaF2 Additions. In: Light Metals, Springer, Berlin, 563-565.
https://doi.org/10.1007/978-3-319-48160-9_99
[10]  Votava, K. and Matiasovsky (1973) Measurement of Viscosity of Fused Salt. I. Method of Measurement. Viscosity of Li3AlF6 and Na3AlF6. Chemical Papers Chemicke Zvesti, 27, 172-182.
[11]  Brockner, W., et al. (1979) Viscosity of Sodium Fluoride-Aluminium Fluoride Melt Mixtures. Berichte der Bunsengesellschaft Für Physikalische Chemie, 83, 12-19.
https://doi.org/10.1002/bbpc.19790830103
[12]  Robelin, C. and Chartrand, P. (2011) A Viscosity Model for the (NaF + AlF3 + CaF2 + Al2O3) Electrolyte. The Journal of Chemical Thermodynamics, 43, 764-774.
https://doi.org/10.1016/j.jct.2010.12.017
[13]  陶绍虎, 狄跃忠, 彭建平, 等. LiF对Na3AlF6-Al2O3熔盐电解阴极过程的影响[J]. 化工学报, 2014, 65(2): 633-640.
[14]  Tylka, M.M., Willit, J.L., Prakash, J. and Williamson, M.A. (2015) Application of Voltammetry for Quantitative Analysis of Actinides in Molten Salts. Journal of the Electro-chemical Society, 162, 852-859.
https://doi.org/10.1149/2.0281512jes
[15]  方钊. [K3AlF6/Na3AlF6]-AlF3-Al2O3体系中低温铝电解的阴极抗渗透研究[D]: [博士学位论文]. 长沙: 中南大学, 2011.
[16]  Hives, J., Fellner, P. and Thonstad, J. (2013) Transport Numbers in the Molten System NaF-KF-AlF3-Al2O3. Ionics, 19, 315-319.
https://doi.org/10.1007/s11581-012-0736-6
[17]  Ratkje, S.K. and Rytter, E. (1974) Raman Spectra of Molten Mixtures Containing Aluminum Fluoride. I. The LiF-Li3AlF6 Eutectic Mixture. The Journal of Physical Chemistry, 78, 1499-1502.
https://doi.org/10.1021/j100608a011
[18]  Rytter, E. and Ratkje, S.K. (1975) Raman Spectra of Molten Mixtures Containing Aluminum Fluoride. II. Dissociation of AlF63. Acta Chemia Scandinavica, 29, 565-566.
https://doi.org/10.3891/acta.chem.scand.29a-0565
[19]  Gilbert, B. and Mamantov, G. (1974) Raman Spectrum of AlF4-Ion in Molten Fluorides. Inorganic & Nuclear Chemistry Letters, 10, 1123-1129.
https://doi.org/10.1016/0020-1650(74)80177-7
[20]  Gilbert, B. and Mamantov, G. (1976) Raman Specturm of Al2O3 Solutions in Molten Cryolite and Other Aluminum Fluoride Containing Melts. Inorganic & Nuclear Chemistry Letters, 12, 415-424.
https://doi.org/10.1016/0020-1650(76)80052-9
[21]  Gilbert, B., Robert, E., Tixhon, E., et al. (1995) Acid-Base Properties of Cryolite Based Melts with CaF2, MgF2 and Al2O3 Additions, a Comparison between Raman and Vapour Pressure Measurements. In: Light Metals 1995, Minerals, Metals& Material Soc., Warrendale, 181-194.
[22]  胡宪伟, 王兆文, 刘敬敬, 等. NaF-AlF3-LiF熔盐结构的Raman光谱研究[EB/OL]. 北京: 中国科技论文在线. http://www.paper.edu.cn/releasepaper/content/201401-830, 2014-01-17.
[23]  Stebbins, J.F. and Farnan, I. (1992) Solid and Liquids in the NaF-AlF3-Al2O3 System: A High-Temperature NMR Study. Journal of the American Ceramic Society, 75, 3001-3006.
https://doi.org/10.1111/j.1151-2916.1992.tb04378.x
[24]  Lacassagne, V., Bessada, C., Florian, P., et al. (2002) Structure of High-Temperature NaF-AlF3-Al2O3 Melts: A Multinuclear NMR Study. Journal of Physical Chemistry B, 106, 1862-1868.
https://doi.org/10.1021/jp013114l
[25]  Ma, N., You, J.L., Lu, L.M., et al. (2019) Quantitative Analysis on the Microstructure of Molten Binary KF-AlF3 System by in Situ Raman Spectroscopy Assisted with First Principles Method. Journal of Raman Spectroscopy, 51, 187-192.
https://doi.org/10.1002/jrs.5751
[26]  Nazmutdinov, R.R., Zinkicheva, T.T., Yu, S., et al. (2010) A Spectroscopic and Computational Study of Al(III) Complexes in Sodium Cryolite Melts: Ionic Composition in a Wide Range of Cry-olite Ratios. Spectrochimica Acta Part A, 75, 1244-1252.
https://doi.org/10.1016/j.saa.2009.12.035
[27]  Lv, X.J., Xu, Z.M., Li, J., et al. (2016) First-Principles Molecular Dynamics Investigation on Na3AlF6 Molten Salt. Journal of Fluorine Chemistry, 185, 42-47.
https://doi.org/10.1016/j.jfluchem.2016.03.004
[28]  Lv, X.J., Han, Z.X., et al. (2019) Ionic Structure and Transport Properties of KF-NaF-AlF3 Fused Salts: A Molecular Dynamics Study. Physical Chemistry Chemical Physics, 12, 54-48.
[29]  Lv, X.J., Han, Z.X., et al. (2018) First-Principles Molecular Dynamics Study of Ionic Structure and Transport Properties of LiF-NaF-AlF3 Molten Salt. Chemical Physics Letters, 2614, 30477-30479.
[30]  Machado, K., Zanghi, D., Salanne, M. and Bessada, C. (2019) Structural, Dynamic, and Thermo-dynamic Study of KF-AlF3 Melts by Combining High-Temperature NMR and Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 123, 2147-2156.
https://doi.org/10.1021/acs.jpcc.8b11907
[31]  Lv, X.J., Xu, Z.M., et al. (2016) Theoretical Investigation on Local Structure and Transport Properties of NaF-AlF3 Molten Salts under Electric Field Environment. Journal of Molecular Structure, 117, 105-112.
https://doi.org/10.1016/j.molstruc.2016.03.076
[32]  Lv, X.J., Xu, Z.M., et al. (2016) Molecular Dynamics Inves-tigation on Structural and Transport Properties of Na3AlF6-Al2O3 Molten Salt. Journal of Molecular Liquids, 221, 26-32.
https://doi.org/10.1016/j.molliq.2016.05.064

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133