全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超高强铜钛合金的研究现状
Research Progress of Ultrahigh-Strength Copper-Titanium Alloys

DOI: 10.12677/MEng.2020.73018, PP. 121-129

Keywords: 高耐热铜合金,高强,高导,时效强化
High Heat Resistant Copper Alloy
, High Strength, High Conductivity, Aging Strengthening

Full-Text   Cite this paper   Add to My Lib

Abstract:

超高强弹性铜合金是一类具有优异强度和导电导热性能的材料,目前已经广泛应用于载流元器件、电磁继电器以及航空航天器件等领域,其中Cu-Ti系合金因其优异的力学性能和加工成型性而得到关注。本文综述了超高强铜钛合金的合金成分设计、制备加工工艺和相关物理性能,在此基础上分析了铜钛合金开发应用中所需要解决的问题,并对铜钛合金的未来发展趋势进行了分析和展望。
Ultra-high strength elastic copper alloys with excellent strength, conductive and thermal conductivity have been widely used in the fields of current-carrying components, electromagnetic relays and aerospace devices. After years of research, a series of advances have been made in the research of Cu-Ti alloy materials. In this paper, the alloy composition design, preparation and processing technology and properties of superhigh strength copper-titanium alloy are reviewed, the problems to be solved in the development and application of copper-titanium alloy are pointed out, and the future development trends of copper-titanium alloys are analyzed and prospected.

References

[1]  Nagarjuna, S. and Srinivas, M. (2005) Elevated Temperature Tensile Behaviour of a Cu-4.5Ti Alloy. Materials Science and Engineering: A, 406, 186-194.
https://doi.org/10.1016/j.msea.2005.06.064
[2]  Suzuki, S., Hirabayashi, K., Shibata, H., et al. (2003) Electrical and Thermal Conductivities in Quenched and Aged High-Purity Cu-Ti Alloys. Scripta Materialia, 48, 431-435.
https://doi.org/10.1016/S1359-6462(02)00441-4
[3]  Soffa, W.A. and Laughlin, D.E. (2004) High-Strength Age Hardening Copper-Titanium Alloys: Redivivus. Progress in Materials Science, 49, 347-366.
https://doi.org/10.1016/S0079-6425(03)00029-X
[4]  Nagarjuna, S., Balasubramanian, K. and Sarma, D.S. (1997) Effect of Ti Additions on the Electrical Resistivity of Copper. Materials Science and Engineering A, 225, 118-124.
https://doi.org/10.1016/S0921-5093(96)10578-5
[5]  张楠, 李振华, 姜训勇, 等. Ti含量对Cu-Ti合金时效过程的影响[J]. 材料热处理学报, 2016, 37(3): 36-40.
[6]  Cornie, J.A., Datta, A. and Soffa, W.A. (1973) An Electron Microscopy Study of Precipitation in Cu-Ti Sideband Alloys. Metall Trans, 3, 727-733.
https://doi.org/10.1007/BF02643081
[7]  Datta, A. and Sofia, W.A. (1976) The Structure and Properties of Age Hardened Cu-Ti Alloys. Acta Metall, 24, 987-1001.
https://doi.org/10.1016/0001-6160(76)90129-2
[8]  Woychik, C.G., Rioja, R.J., Massalski, T.B., et al. (1985) Decomposition of Rapidly Solidified Cu-Ti Solid Solutions. Metallurgical and Materials Transactions A, 7, 1353-1354.
https://doi.org/10.1007/BF02670339
[9]  卫英慧, 王笑天. Cu-Ti合金时效早期相变规律的研究[J]. 电子显微学报, 1997(2): 40-45.
[10]  卫英慧, 王笑天. Cu-4%Ti合金胞状反应的研究[J]. 西安交通大学学报, 1997, 31(3): 49-52 + 64.
[11]  卫英慧, 王笑天. Cu-4Ti合金调幅分解的TEM研究[J]. 稀有金属材料与工程, 1997(3): 5-8.
[12]  Markandeya, R., Nagarjuna, S. and Sarma, D.S. (2004) Precipitation Hardening of Cu-Ti-Cr Alloys. Materials Science and Engineering: A, 371, 291-305.
https://doi.org/10.1016/j.msea.2003.12.002
[13]  Markandeya, R., Nagarjuna, S. and Sarma, D.S. (2005) Effect of Prior Cold Work on Age Hardening of Cu-4Ti-1Cr Alloy. Materials Science and Engineering: A, 404, 305-313.
https://doi.org/10.1016/j.msea.2005.05.072
[14]  Markandeya, R., Nagarjuna, S. and Sarma, D.S. (2006) Effect of Prior Cold Work on Age Hardening of Cu-3Ti-1Cr Alloy. Materials Characterization, 57, 348-357.
https://doi.org/10.1016/j.matchar.2006.02.017
[15]  曹兴民, 李华清, 向朝建, 等. Zr的加入对Cu-Ti合金耐热性能影响的研究[J]. 热加工工艺, 2008(14): 16-18.
[16]  杨春秀, 汤玉琼, 郭富安, 等. Zr对Cu-4Ti-0.05RE合金组织和性能的影响[J]. 稀有金属材料与工程, 2010, 39(S1): 266-270.
[17]  Nagarjuna, S. and Sarma, D.S. (2002) Effect of Cobalt Additions on the Age Hardening of Cu-4.5Ti Alloy. Journal of Materials Science, 37, 1929-1940.
https://doi.org/10.1023/A:1015278610543
[18]  Batra, I.S., Laik, A., Kale, G.B., et al. (2005) Microstructure and Properties of a Cu-Ti-Co Alloy. Materials Science and Engineering: A, 402, 118-125.
https://doi.org/10.1016/j.msea.2005.04.015
[19]  Semboshi, S., Ikeda, J., Iwase, A., et al. (2015) Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu-Ti Alloys. Materials, 8, 3467-3478.
https://doi.org/10.3390/ma8063467
[20]  Lebreton, V., Pachoutinski, D. and Bienvenu, Y. (2009) An Investigation of Microstructure and Mechanical Properties in Cu-Ti-Sn Alloys Rich in Copper. Materials Science and Engineering: A, 508, 83-92.
https://doi.org/10.1016/j.msea.2009.01.050
[21]  陈春宇. Cu-Ti-Sn导电弹性合金的组织与性能研究[D]: [硕士论文]. 西安: 西安理工大学, 2014.
[22]  Wang, X.H., Chen, C., Guo, T.T., et al. (2015) Microstructure and Properties of Ternary Cu-Ti-Sn Alloy. Journal of Materials Engineering and Performance, 24, 2738-2743.
https://doi.org/10.1007/s11665-015-1483-4
[23]  Liu, J., Wang, X.H., Guo, T.T., et al. (2015) Microstructure and Properties of Cu-Ti-Ni Alloys. International Journal of Minerals, Metallurgy, and Materials, 22, 1199-1204.
https://doi.org/10.1007/s12613-015-1185-9
[24]  刘佳, 王献辉, 冉倩妮, 等. 时效态Cu-3Ti-1Ni合金的组织与性能[J]. 中国有色金属学报(英文版), 2016, 26(12): 3183-3188.
[25]  刘佳, 王献辉, 郭婷婷, 等. 时效处理对Cu-3Ti-3Ni合金组织与性能的影响[J]. 稀有金属材料与工程(英文版), 2016, 45(5): 1162-1167.
[26]  刘佳, 王献辉, 冉倩妮, 等. 深冷处理对Cu-3Ti-5Ni合金组织与性能的影响[J]. 金属热处理, 2015, 40(11): 160-164.
[27]  Konno, T.J., Nishio, R., Semboshi, S., et al. (2008) Aging Behavior of Cu-Ti-Al Alloy Observed by Transmission Electron Microscopy. Journal of Materials Science, 43, 3761-3768.
https://doi.org/10.1007/s10853-007-2233-2
[28]  孙晓春. Cu-3Ti-1Al合金的组织及性能研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2012.
[29]  冉倩妮. Cu-Ti-Mg导电弹性铜合金的组织与性能研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2016.
[30]  刘佳, 王献辉, 冉倩妮, 等. Cu-3Ti-2Mg合金的时效特征[J]. 稀有金属材料与工程(英文版), 2018, 47(7): 1980-1985.
[31]  Li, C., Wang, X.H., Li, B., et al. (2020) Effect of Cold Rolling and Aging Treatment on the Microstructure and Properties of Cu-3Ti-2Mg Alloy. Journal of Alloys and Compounds, 818, Article ID: 152915.
https://doi.org/10.1016/j.jallcom.2019.152915
[32]  董亚光. 高强导电Cu-Ti-Fe-Cr合金箔的时效行为研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.
[33]  Li, S., Li, Z., Zhu, X., et al. (2016) Microstructure and Property of Cu-2.7Ti-0.15Mg-0.1Ce-0.1Zr Alloy Treated with a Combined Aging Process. Materials Science & Engineering A, 650, 345-353.
https://doi.org/10.1016/j.msea.2015.10.062
[34]  Liu, J., Wang, X.H., Chen, J., et al. (2019) The Effect of Cold Rolling on Age Hardening of Cu-3Ti-3Ni-0.5Si Alloy. Journal of Alloys and Compounds, 797, 370-379.
https://doi.org/10.1016/j.jallcom.2019.05.091
[35]  Markandeya, R., Nagarjuna, S. and Sarma, D.S. (2004) Pre-cipitation Hardening of Cu-4Ti-1Cd Alloy. Journal of Materials Science, 39, 1579-1587.
https://doi.org/10.1023/B:JMSC.0000016155.64776.52
[36]  Markandeya, R., Nagarjuna, S. and Sarma, D.S. (2007) Precipitation Hardening of Cu-3Ti-1Cd Alloy. Journal of Materials Engineering and Performance, 16, 640-646.
https://doi.org/10.1007/s11665-007-9082-7
[37]  Nagarjuna, S., Balasubramanian, K. and Sarma, D.S. (1997) Ef-fect of Prior Cold Work on Mechanical Properties and Structure of an Age-Hardened Cu-1.5 wt.% Ti Alloy. Journal of Materials Science, 32, 3375-3385.
https://doi.org/10.1023/A:1018608430443
[38]  Nagarjuna, S., Balasubramanian, K. and Sarma, D.S. (1999) Effect of Prior Cold Work on Mechanical Properties, Electrical Conductivity and Microstructure of Aged Cu-Ti Alloys. Journal of Materials Science, 34, 2929-2942.
https://doi.org/10.1023/A:1004603906359
[39]  Nagarjuna, S., Sharma, K.K., Sudhakar, I., et al. (2001) Age Hardening Studies in a Cu-4.5Ti-0.5Co Alloy. Materials Science and Engineering A, 313, 251-260.
https://doi.org/10.1016/S0921-5093(00)01834-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133