|
Smart Grid 2020
动力锂电池健康状态评估方法综述
|
Abstract:
[1] | Hofmann, J., Guan, D., Chalvatzis, K. and Huo, H. (2016) Assessment of Electrical Vehicles as a Successful Driver for Reducing CO2 Emissions in China. Applied Energy, 184, 995-1003. https://doi.org/10.1016/j.apenergy.2016.06.042 |
[2] | Sulaiman, N., Hannan, M.A., Mohamed, A., Majlan, E.H. and Wan Daud, W.R. (2015) A Review on Energy Management System for Fuel Cell Hybrid Electric Vehicle: Issues and Challenges. Renewable & Sustainable Energy Reviews, 52, 802-814. https://doi.org/10.1016/j.rser.2015.07.132 |
[3] | Opitz, A., Badami, P., Shen, L., Vignarooban, K. and Kannan, A.M. (2017) Can Li-Ion Batteries Be the Panacea for Automotive Applications. Renewable & Sustainable Energy Reviews, 68, 685-692.
https://doi.org/10.1016/j.rser.2016.10.019 |
[4] | Lipu, M.S.H., Hannan, M.A., Hussain, A., Saad, M.H.M., Ayob, A. and Blaabjerg, F. (2018) State of Charge Estimation for Lithium-Ion Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm. IEEE Access, 6, 28150-28161. https://doi.org/10.1109/ACCESS.2018.2837156 |
[5] | Chen, Y., Miao, Q., Zheng, B., Wu, S. and Pech, M. (2013) Quantitative Analysis of Lithium-Ion Battery Capacity Prediction via Adaptive Bathtub-Shaped Function. Energies, 6, 3082-3096. https://doi.org/10.3390/en6063082 |
[6] | Ng, K.S., Moo, C.S., Chen, Y.P. and Hsieh, Y.C. (2009) Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries. Applied Energy, 86, 1506-1511.
https://doi.org/10.1016/j.apenergy.2008.11.021 |
[7] | Waag, W., Fleischer, C. and Sauer, D.U. (2014) Critical Review of the Methods for Monitoring of Lithium-Ion Batteries in Electric and Hybrid Vehicles. Journal of Power Sources, 258, 321-339.
https://doi.org/10.1016/j.jpowsour.2014.02.064 |
[8] | Xing, Y.J., He, W., Pecht, M. and Tsui, K.L. (2014) State of Charge Estimation of Lithium-Ion Batteries Using the Open Circuit Voltage at Various Ambient Temperatures. Applied Energy, 113, 106-115.
https://doi.org/10.1016/j.apenergy.2013.07.008 |
[9] | Guo, Z., Qiu, X.P., Hou, G.D., Liaw, B.Y. and Zhang, C.S. (2014) State of Health Estimation for Lithium Ion Batteries Based on Charging Curves. Power Sources, 249, 457-462. https://doi.org/10.1016/j.jpowsour.2013.10.114 |
[10] | Weng, C.H., Sun, J. and Peng, H. (2014) A Unified Open-Circuit-Voltage Model of Lithium-Ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring. Power Sources, 258, 228-237.
https://doi.org/10.1016/j.jpowsour.2014.02.026 |
[11] | Li, S.E., Wang, B., Peng, H. and Hu, X. (2014) An Electro-Chemistry Based Impedance Model for Lithium-Ion Batteries. Journal of Power Sources, 258, 9-18. https://doi.org/10.1016/j.jpowsour.2014.02.045 |
[12] | Eddahech, A., Briat, O., Bertrand, N., Deletage, J.Y. and Vinassa, J.M. (2012) Behavior and State-of-Health Monitoring of Li-Ion Batteries Using Impedance Spectroscopy and Recurrent Neural Networks. International Journal of Electrical & Power Energy Systems, 42, 487-494. https://doi.org/10.1016/j.ijepes.2012.04.050 |
[13] | Ting, T.O., Man, K.L., Lim, E.G. and Leach, M. (2014) Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System. The Scientific World Journal, 2014, Article ID: 176052.
https://doi.org/10.1155/2014/176052 |
[14] | Kim, J., Lee, S. and Cho, B.H. (2012) Complementary Cooperation Algorithm Based on DEKF Combined with Pattern Recognition for SOC/Capacity Estimation and SOH Prediction. IEEE Transactions on Power Electronics, 27, 436-451.
https://doi.org/10.1109/TPEL.2011.2158554 |
[15] | 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426. |
[16] | Schwunk, S., Armbruster, N., Straub, S., Kehl, J. and Vetter, M. (2013) Particle Filter for State of Charge and State of Health Estimation for Lithium-Iron Phosphate Batteries. Journal of Power Sources, 239, 705-710.
https://doi.org/10.1016/j.jpowsour.2012.10.058 |
[17] | Bi, J., Zhang, T., Yu, H.Y. and Kang, Y.Q. (2016) State-of-Health Estimation of Lithium-Ion Battery Packs in Electric Vehicles Based on Genetic Resampling Particle Filter. Applied Energy, 182, 558-568.
https://doi.org/10.1016/j.apenergy.2016.08.138 |
[18] | 林娜, 朱武, 邓安全. 基于引力场粒子滤波算法估算锂电池健康状态[J]. 科技创新与应用, 2019(25): 32-33. |
[19] | Duong, V., Bastawrous, H.A., Lim, K., See, K.W., Zhang, P. and Dou, S.X. (2015) Online State of Charge and Model Parameters Estimation of the LiFePO4 Battery in Electric Vehicles Using Multiple Adaptive Forgetting Factors Recursive Least-Squares. Journal of Power Sources, 296, 215-224. https://doi.org/10.1016/j.jpowsour.2015.07.041 |
[20] | 朱瑞, 段彬, 温法政, 张君鸣, 张承慧. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019(20): 1-9. |
[21] | Salkind, A.J., Fennie, C., Singh, P., Atwater, T. and Reisner, D.E. (1999) Determination of State-of-Charge and State-of-Health of Batteries by Fuzzy Logic Methodology. Journal of Power Sources, 80, 293-300.
https://doi.org/10.1016/S0378-7753(99)00079-8 |
[22] | Landi, M. and Gross, G. (2014) Measurement Techniques for Online Battery State of Health Estimation in Vehicle-to-Grid Applications. IEEE Transactions on Instrumentation and Measurement, 63, 1224-1234.
https://doi.org/10.1109/TIM.2013.2292318 |
[23] | Hannan, M.A., Hoque, M.M., Hussain, A., Yusof, Y. and Ker, P.J. (2018) State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 6, 19362-19378. https://doi.org/10.1109/ACCESS.2018.2817655 |
[24] | Hannan, M.A., Lipu, M.S.H., Hussain, A., Saad, M.H. and Ayob, A. (2018) Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm. IEEE Access, 6, 10069-10079.
https://doi.org/10.1109/ACCESS.2018.2797976 |
[25] | Shahriari, M. and Farrokhi, M. (2013) Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Transactions on Industrial Electronics, 60, 191-202. https://doi.org/10.1109/TIE.2012.2186771 |
[26] | 刘婉晴. 电池健康状态估算[J]. 华南理工大学学报(自然科学版), 2017, 39(1): 91-95. |
[27] | 韩丽, 戴广剑, 李宁. 基于GA-Elman神经网络的电池劣化程度预测研究[J]. 电源技术, 2013, 37(2): 249-250. |
[28] | Li, H.T., Liang, T.J. and Chen, S.M. (2013) Estimation of Battery State of Health Using Probabilistic Neural Network. IEEE Transactions on Industrial Informatics, 9, 679-685. https://doi.org/10.1109/TII.2012.2222650 |
[29] | Zhang, R., Xu, F., Chen, J.L., et al. (2016) Li-Ion Battery SOH Prediction Based on PSO-RBF Neural Network. China Mechanical Engineering, 27, 2975-2981. |
[30] | Basak, D., Srimanta, P. and Patranbis, D.C. (2007) Support Vector Regression. Neural Information Processing Letters & Reviews, 11, 203-224. |
[31] | 李睿琪, 汪玉洁, 陈宗海. 一种基于支持向量机的锂电池健康状态评估方法[M]. 合肥: 中国科技大学出版社, 2016: 55-60. |
[32] | 刘皓, 胡明昕, 朱一亨, 等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(3): 329-334. |
[33] | 卢明哲. 动力电池SOH估计及故障预测方法研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2015. |
[34] | 孙猛猛. 基于数据驱动方法的锂离子电池健康状态估计[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2018. |
[35] | Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. and Dietmayer, K. (2013) Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods. Journal of Power Sources, 239, 680-688.
https://doi.org/10.1016/j.jpowsour.2012.11.146 |
[36] | Widodo, A., Shim, M.-C., Caesarendra, W. and Yang, B.-S. (2011) Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy. Expert Systems with Application, 38, 11763-11769.
https://doi.org/10.1016/j.eswa.2011.03.063 |
[37] | Hu, X., Li, S.E., Jia, Z. and Egardt, B. (2014) Enhanced Sample Entropy-Based Health Management of Li-Ion Battery for Electrified Vehicles. Energy, 64, 953-960. https://doi.org/10.1016/j.energy.2013.11.061 |
[38] | Feng, X., Li, J., Ouyang, M., Lu, L., Li, J. and He, X. (2013) Using Probability Density Function to Evaluate the State of Health of Lithium-Ion Batteries. Journal of Power Sources, 232, 209-218.
https://doi.org/10.1016/j.jpowsour.2013.01.018 |
[39] | Kim, M.Y., Kim, J.H. and Moon, G.W. (2014) Center-Cell Concentration Structure of a Cellto-Cell Balancing Circuit with a Reduced Number of Switches. IEEE Transactions on Power Electronics, 29, 5285-5297.
https://doi.org/10.1109/TPEL.2013.2292078 |
[40] | Omar, N., Verbrugge, B., Mulder, G., Van Den Bossche, P., Van Mierlo, J., Daowd, M., Dhaens, M. and Pauwels, S. (2010) Evaluation of Performance Characteristics of Various Lithium-Ion Batteries for Use in BEV Application. IEEE Vehicle Power and Propulsion Conference, Lille, 1-6. https://doi.org/10.1109/VPPC.2010.5729083 |
[41] | Jaguemont, J., Boulon, L., Dube, Y. and Poudrier, D. (2014) Low Temperature Discharge Cycle Tests for a Lithium- Ion Cell. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 1-6.
https://doi.org/10.1109/VPPC.2014.7007097 |
[42] | Leng, F., Tan, C.M. and Pecht, M. (2015) Effect of Temperature on the Aging Rate of Li-Ion Battery Operating above Room Temperature. Scientific Reports, 5, Article No. 12967. https://doi.org/10.1038/srep12967 |
[43] | Bragard, M., Soltau, N., Thomas, S. and De Doncker, R.W. (2010) The Balance of Renewable Sources and User Demands in Grids: Power Electronics for Modular Battery Energy Storage Systems. IEEE Transactions on Power Electronics, 25, 3049-3056. https://doi.org/10.1109/TPEL.2010.2085455 |
[44] | Cao, J. and Emadi, A. (2012) A New Battery/Ultracapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on Power Electronics, 27, 122-132.
https://doi.org/10.1109/TPEL.2011.2151206 |
[45] | Kim, J., Shin, J., Chun, C. and Cho, B.H. (2012) Stable Configuration of a Li-Ion Series Battery Pack Based on a Screening Process for Improved Voltage/SOC Balancing. IEEE Transactions on Power Electronics, 27, 411-424.
https://doi.org/10.1109/TPEL.2011.2158553 |
[46] | Belov, D. and Yang, M.-H. (2008) Failure Mechanism of Li-Ion Battery at Overcharge Conditions. Journal of Solid State Electrochemistry, 12, 885-894. https://doi.org/10.1007/s10008-007-0449-3 |
[47] | Maleki, H. and Howard, J.N. (2006) Effects of Overdischarge on Performance and Thermal Stability of a Li-Ion Cell. Journal of Power Sources, 160, 1395-1402. https://doi.org/10.1016/j.jpowsour.2006.03.043 |
[48] | Danzer, M.A., Liebau, V. and Maglia, F. (2015) Aging of Lithium-Ion Batteries for Electric Vehicles. In: Advances in Battery Technologies for Electric Vehicles, Elsevier, Amsterdam, 359-387.
https://doi.org/10.1016/B978-1-78242-377-5.00014-5 |
[49] | Marongiu, A., Nu?baum, F.G.W., Waag, W., Garmendia, M. and Sauer, D.U. (2016) Comprehensive Study of the Influence of Aging on the Hysteresis Behavior of a Lithium Iron Phosphate Cathode-Based Lithium Ion Battery—An Experimental Investigation of the Hysteresis. Applied Energy, 171, 629-645.
https://doi.org/10.1016/j.apenergy.2016.02.086 |
[50] | Roscher, M.A. and Sauer, D.U. (2011) Dynamic Electric Behavior and Open-Circuit-Voltage Modeling of LiFePO4-Based Lithium Ion Secondary Batteries. Journal of Power Sources, 196, 331-336.
https://doi.org/10.1016/j.jpowsour.2010.06.098 |
[51] | Barai, A., Widanage, W.D., Marco, J., McGordon, A. and Jennings, P. (2015) A Study of the Open Circuit Voltage Characterization Technique and Hysteresis Assessment of Lithium-Ion Cells. Journal of Power Sources, 295, 99-107.
https://doi.org/10.1016/j.jpowsour.2015.06.140 |
[52] | Zhu, L., Sun, Z., Dai, H. and Wei, X. (2015) A Novel Modeling Methodology of Open Circuit Voltage Hysteresis for LiFePO4 Batteries Based on an Adaptive Discrete Preisach Model. Applied Energy, 155, 91-109.
https://doi.org/10.1016/j.apenergy.2015.05.103 |