|
Pure Mathematics 2020
KdV方程满足能量守恒的数值方法
|
Abstract:
本文对KdV方程设计了一类发展的满足两个守恒律的数值格式,该格式不仅能满足数值解守恒, 而且能满足数值能量守恒。 数值算例结果表明,这类满足两个守恒律的数值格式,在长时间的数 值模拟中具有很好的稳定性和保结构性。
We design a class of improved scheme satisfying two conservation laws for the KdV equation, which satisfies both the numerical solution and numerical energy conserva- tive. Numerical experiments show that the schemes have good stability and structure- preserving property in long time numerical simulations.
[1] | 王志刚. 线性传输方程满足多个守恒律的差分格式[D]: [硕士学位论文]. 上海: 上海大学, 2005: No. 11903-99118086. |
[2] | Li, H., Wang, Z. and Mao, D. (2008) Numerically Neither Dissipative Nor Compressive Scheme for Linear Advection Equation and Its Application to the Euler System. Journal of Scientific Computing, 36, 285-331. https://doi.org/10.1007/s10915-008-9192-x |
[3] | 李红霞, 茅德康. 单个守恒型方程的煽耗散格式中耗散函数的构造[J]. 计算物理, 2004, 21(3): 319-331. |
[4] | Cui, Y. and Mao, D. (2012) Error Self-Canceling of a Difference Scheme Maintaining Two Conservation Laws for Linear Advection Equation. Mathematics of Computation, 81, 715-741. https://doi.org/10.1090/S0025-5718-2011-02523-8 |
[5] | Cui, Y. and Mao, D. (2007) Numerical Method Satisfying the First Two Conservation Laws for the Korteweg- de Vries Equation. Journal of Computational Physics, 227, 376-399. https://doi.org/10.1016/j.jcp.2007.07.031 |
[6] | Holden, H., Hvistendahl, K. and Risebro, N. (1999) Operator Splitting Methods for Generalized Korteweg-de Vries Equations. Journal of Computational Physics, 153, 203-222. https://doi.org/10.1006/jcph.1999.6273 |
[7] | Strang, G. (1968) On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5, 506-517. https://doi.org/10.1137/0705041 |
[8] | LeVeque, R.J. (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cam- bridge. https://doi.org/10.1017/CBO9780511791253 |
[9] | Harten, A. (1989) ENO Schemes with Subcell Resolution. Journal of Computational Physics, 83, 148-184. https://doi.org/10.1016/0021-9991(89)90226-X |
[10] | Harten, A., Harten, A., Engquist, B., Osher, S. and Chakravarthy, S.R. (1987) Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III. Journal of Computational Physics, 71, 231-303. https://doi.org/10.1016/0021-9991(87)90031-3 |
[11] | Yan, J. and Shu, C. (2002) A Local Discontinuous Galerkin Method for KdV Type Equation. SIAM Journal on Numerical Analysis, 40, 769-791. https://doi.org/10.1137/S0036142901390378 |