|
Pure Mathematics 2020
多重边图的2-洛朗多项式
|
Abstract:
2-洛朗多项式(2-Laurent Polynomial)是图论中重要的不变量之一。如果两个空间图的投影图是同胚的,那么这两个投影图的2-洛朗多项式是相同的,这是研究图分类问题的重要方法。而多重边图是一类既特殊又简单的图,本文研究多重边图的2-洛朗多项式并给出了其推导公式。
2-Laurent Polynomial is one of the important invariants in graph theory. If the projected graphs of the two spatial graphs are homeomorphic, then the 2-Laurent polynomials of the two projected graphs are the same, which is an important method to study the graph classification problem. Multi-edge graphs are a kind of special and simple graphs. In this paper, we study the 2-Laurent polynomials of multi-edge graphs and give their derivation formulas.
[1] | Negami, S. (1987) Polynomial Invariants of Graphs. Transactions of the American Mathematical Society, 299, 601-622. https://doi.org/10.1090/S0002-9947-1987-0869224-1 |
[2] | 姜伯驹. 绳圈的数学[M]. 大连: 大连理工大学出版社, 2011: 53-69. |
[3] | Yamada, S. (1989) An Invariant of Spatial Graphs. Journal of Graph Theory, 13, 537-551. https://doi.org/10.1002/jgt.3190130503 |
[4] | Li, M., Lei, F., Li, F. and Vesnin, A. (2018) The Yamada Polynomial of Spatial Graphs Obtained by Edge Replacements. Journal of Knot Theory and Its Ramifications, 27, Article ID: 1842004. https://doi.org/10.1142/S021821651842004X |