|
虫草菌净化水产养殖废水条件优化及效果
|
Abstract:
本研究尝试利用大型真菌虫草菌C058处理水产养殖废水。在无菌环境下,采用模拟废水考察了废水初始浓度、碳源添加浓度及接种量对C058去除污染物的影响,获得最适作用条件;进一步在开放环境下,分析了C058对模拟废水的处理效果;最后在开放环境下,探讨了C058对实际废水的处理效果。结果表明,C058的最适作用条件为原浓度废水、葡萄糖添加浓度550 mg/L,接种量1%,此时对NH4+-N、TN和TP的去除率分别达到68.17%、56.41%和55.90%。在开放环境下,C058对模拟废水的处理效果略低于无菌环境条件(两者无显著性差异),说明C058可以在开放环境中发挥净水作用。对三种代表性鱼塘水样,C058对NH4+-N、TN和TP的去除率分别达到80.50%、67.80%和67.80%以上,同时C058菌丝生长量(以湿重计)增加了22.50%以上。可见,采用虫草菌净化水产养殖废水具有可行性,不仅去除了污染物,而且收获了有价值的虫草菌丝体,为水产养殖废水治理提供了新途径。
This study tried to treat aquaculture wastewater with Cordyceps sp. C058. In a sterile environment, to obtain the best conditions, the effects of the initial concentration of wastewater, the addition con-centration of carbon source and the inoculation amount on the removal rate of pollution indicators were investigated by using the simulated wastewater. Further, the treatment effects of C058 on the simulated wastewater in an open environment were analyzed. The results showed that the optimal conditions for C058 were the original concentration of wastewater and the glucose added concen-tration of 550 mg/L, and the inoculation amount was 1%. At this time, the removal rates of NH4+-N, TN and TP reached 68.17%, 56.41% and 55.90%, respectively. In an open environment, the treat-ment effect of C058 on simulated wastewater was slightly lower than that of the sterile environment (there was no significant difference between the two), indicating that C058 could play a role of puri-fying water in the open environment. For three representative fishponds samples, the removal rates of NH4+-N, TN and TP by C058 were 80.50%, 67.80% and 67.80%, respectively, while the growth rate of C058 mycelium (measured by wet weight) increased by over 22.50%. It could be seen that using Cordyceps sp. C058 to purify aquaculture wastewater is feasible, not only to remove pollutants, but also to harvest valuable cordyceps mycelium, which will provide a new way for aquaculture wastewater treatment.
[1] | 杨岳, 关成立, 张水梅, 等. 水产养殖废水处理技术及研究进展[J]. 当代化工研究, 2017(8): 73-75. |
[2] | 吴新民, 郑向荣, 郗艳娟, 等. 水产品质量安全与控制对策[J]. 河北渔业, 2011(5): 56-57. |
[3] | 罗马. 2018年世界渔业和水产养殖状况——实现可持续发展目标[M]. 罗马: 联合国粮食及农业组织, 2018: 2. |
[4] | 韩建华. 水产养殖废水污染危害及其处理技术探析[J]. 农业与技术, 2018, 38(12): 103-156. |
[5] | 黄翔峰, 王珅, 陈国鑫, 等. 人工湿地对水产养殖废水典型污染物的去除[J]. 环境工程学报, 2016, 10(1): 12-20. |
[6] | 傅红梅, 曾维农, 付新梅. 水产养殖废水污染危害及其处理技术研究[J]. 农业与技术, 2020, 40(1): 126-127. |
[7] | Bentzon-Tilia, M., Sonnenschein, E.C. and Gram, L. (2016) Monitoring and Managing Microbes in Aquaculture—Towards a Sustainable Industry. Mi-crobial Biotechnology, 9, 576-584. https://doi.org/10.1111/1751-7915.12392 |
[8] | Lananan, F., Abdul Hamid, S.H., Din, W.N.S., et al. (2014) Symbiotic Bioremediation of Aquaculture Wastewater in Reducing Ammonia and Phosphorus Utilizing Effective Microorganism (EM-1) and Microalgae (Chlorella sp.). International Biodeterioration & Biodegradation, 95, 127-134. https://doi.org/10.1016/j.ibiod.2014.06.013 |
[9] | Sankaran, S., Khanal, S.K., Jasti, N., et al. (2010) Use of Filamentous Fungi for Wastewater Treatment and Production of High Value Fungal Byproducts: A Review. Critical Reviews in Environmental Science and Technology, 40, 400-449. https://doi.org/10.1080/10643380802278943 |
[10] | Godlewska-?y?kiewicz, B., Sawicka, S. and Karpińska, J. (2019) Removal of Platinum and Palladium from Wastewater by Means of Biosorption on Fungi Aspergillus sp. and Yeast Saccharomyces sp. Water, 11, 1522. https://doi.org/10.3390/w11071522 |
[11] | Yang, B., Wang, Y., Liu, Z., et al. (2019) Optimum Removal Conditions of Aniline Compounds in Simulated Wastewater by Laccase from White-Rot Fungi. Journal of Environmental Health Science and Engineering, 17, 135-140. https://doi.org/10.1007/s40201-018-00334-x |
[12] | Negi, R. and Suthar, S. (2018) Degradation of Paper Mill Wastewater Sludge and Cow Dung by Brown-Rot Fungi Oligoporus Placenta and Earthworm (Eisenia fetida) during Vermicomposting. Journal of Cleaner Production, 201, 842-852. https://doi.org/10.1016/j.jclepro.2018.08.068 |
[13] | 陆涛, 张其磊, 姚善泾. 丝状真菌在废水处理过程中的生物脱除作用[J]. 高校化学工程学报, 2016, 30(4): 741-753. |
[14] | Yang, Q., Yang, M., Pritsch, K., et al. (2003) Decolorization of Synthetic Dyes and Production of Manganese-Dependent Peroxidase by New Fungal Isolates. Biotechnology Letters, 25, 709-713. https://doi.org/10.1023/A:1023454513952 |
[15] | Subbaiah, M.V., Vijaya, Y., Reddy, A.S., et al. (2011) Equilibrium, Kinetic and Thermodynamic Studies on the Biosorption of Cu (II) onto Trametes versicolor Biomass. Desalination, 276, 310-316. https://doi.org/10.1016/j.desal.2011.03.067 |
[16] | Iskandar, N.L., Zainudin, N.A.I.M. and Tan, S.G. (2011) Toler-ance and Biosorption of Copper (Cu) and Lead (Pb) by Filamentous Fungi Isolated from a Freshwater Ecosystem. Journal of Environmental Sciences, 23, 824-830. https://doi.org/10.1016/S1001-0742(10)60475-5 |
[17] | Raghukumar, C., Chandramohan, D., Michel, F.C., et al. (1996) Degradation of Lignin and Decolorization of Paper Mill Bleach Plant Effluent (BPE) by Marine Fungi. Bio-technology Letters, 18, 105-106. https://doi.org/10.1007/BF00137820 |
[18] | Mohd Hanafiah, Z., Wan Mohtar, W.H.M., Abu Hasan, H., et al. (2019) Performance of Wild-Serbian Ganoderma lucidum Mycelium in Treating Synthetic Sewage Loading Using Batch Bio-reactor. Scientific Reports, 9, Article No. 16109. https://doi.org/10.1038/s41598-019-52493-y |
[19] | Przysta?, W., Zab?ocka-Godlewska, E. and Grabińska-Sota, E. (2019) Pleurotus ostreatus as a Species with Potentially High Effec-tiveness in the Removal of Synthetic Dyes Belonging to Different Classes. Desalination and Water Treatment, 161, 376-386. https://doi.org/10.5004/dwt.2019.24314 |
[20] | Kumar, V. and Dwivedi, S.K. (2019) Hexavalent Chromium Stress Response, Reduction Capability and Bioremediation Potential of Trichoderma sp. Isolated from Electroplating Wastewater. Ecotoxicology and Environmental Safety, 185, Article ID: 109734. https://doi.org/10.1016/j.ecoenv.2019.109734 |
[21] | 郑侠飞. 微生物制剂和碳源对水产养殖环境的影响及作用机制[D]: [硕士学位论文]. 杭州: 浙江大学, 2017. |
[22] | 卢建珍, 王建伟, 刘有志, 等. 蚕蛹虫草及大米虫草培育技术研究[J]. 北方蚕业, 2016, 37(2): 27-30. |
[23] | Paterson, R.R.M. (2008) Cordyceps-A Traditional Chinese Medicine and Another Fungal Therapeutic Biofactory. Phytochemistry, 69, 1469-1495. https://doi.org/10.1016/j.phytochem.2008.01.027 |
[24] | 樊慧婷, 林洪生. 蛹虫草化学成分及药理作用研究进展[J]. 中国中药杂志, 2013, 38(15): 2549-2552. |
[25] | 吴双双. 碳源对两种大型真菌胞外多糖结构及生物活性的影响[D]: [硕士学位论文]. 郑州: 郑州轻工业学院, 2016. |
[26] | He, H.L., et al. (2020) Protective Effects of Cordyceps Extract against UVB-Induced Damage and Prediction of Application Prospects in the Topical Administration: An Ex-perimental Validation and Network Pharmacology Study. Biomedicine & Pharmacotherapy, 121, Article ID: 109600. |
[27] | 李义勇, 陈玉婵, 李冬利, 等. 几种虫草菌发酵提取物的抗菌抗肿瘤活性研究[J]. 食品工业科技, 2010, 31(6): 88-90. |
[28] | 邹俊良. 生物集成系统净化水产养殖废水的研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2013. |
[29] | 环境保护部. HJ535-2009氨氮的测定——纳氏试剂分光光度法[S]. 2009. |
[30] | 环境保护部. HJ636-2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 2012. |
[31] | 环境保护部. GB11893-89水质总磷的测定钼酸铵分光光度法[S]. 1989. |
[32] | 刘庆辉, 余祥勇, 张鹤千, 等. 微藻对水产养殖尾水中氮磷去除效果的研究进展——基于水产养殖尾水资源化利用角度分析[J]. 水产科技情报, 2019, 46(5): 290-295. |
[33] | 吕宣惠. 污水生化处理过程中碳源利用与处理综述[J]. 山东化工, 2019, 48(23): 218-220. |
[34] | Yang, L.M., Li, H.K. and Wang, Q. (2019) A Novel One-Step Method for Oil-Rich Biomass Production and Harvesting by Co-Cultivating Mi-croalgae with Filamentous Fungi in Molasses Wastewater. Bioresource Technology, 275, 35-43. https://doi.org/10.1016/j.biortech.2018.12.036 |
[35] | Yang, B., Wang, Y., Liu, Z., et al. (2019) Optimum Removal Conditions of Aniline Compounds in Simulated Wastewater by Laccase from White-Rot Fungi. Journal of Environ-mental Health Science and Engineering, 17, 135-140. https://doi.org/10.1007/s40201-018-00334-x |
[36] | Zahmatkesh, M., Spanjers, H. and Van Lier, J.B. (2017) A Novel Approach for Application of White Rot Fungi in Wastewater Treatment under Non-Sterile Conditions: Immobi-lization of Fungi on Sorghum. Environmental Technology, 39, 2030-2040. https://doi.org/10.1080/09593330.2017.1347718 |
[37] | 苗欣宇, 牛红红, 李达, 等. 红酵母固态发酵农林废弃物接种量对菌体生长及营养成分的影响[J]. 农产品加工, 2019(24): 51-54+58. |
[38] | Le Corre, K.S., Valsami-Jones, E., Hobbs, P., et al. (2009) Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39, 433-477. https://doi.org/10.1080/10643380701640573 |
[39] | Zhou, D.D., Li, Y.B., Yang, Y., et al. (2015) Granulation, Control of Bacterial Contamination, and Enhanced Lipid Accumulation by Driving Nutrient Starvation in Coupled Wastewater Treatment and Chlorella regularis Cultivation. Applied Microbiology and Biotechnology, 99, 1531-1541. https://doi.org/10.1007/s00253-014-6288-0 |
[40] | Espinosa-Ortiz, E.J., Rene, E.R., Pakshirajan, K., et al. (2016) Fungal Pelleted Reactors in Wastewater Treatment: Applications and Perspectives. Chemical Engineering Journal, 283, 553-571. https://doi.org/10.1016/j.cej.2015.07.068 |
[41] | Sombatjinda, S., Wantawin, C., Techkarnjanaruk, S., et al. (2013) Water Quality Control in a Closed Re-Circulating System of Pacific White Shrimp (Penaeus vannamei) Postlarvae Co-Cultured with Immobilized Spirulina Mat. Aquaculture International, 22, 1181-1195. https://doi.org/10.1007/s10499-013-9738-2 |
[42] | 武心华. 刺参池塘有机物降解菌固定化及其对水质净化作用研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2011. |