|
江南造山带曲溪金矿床载金黄铁矿地球化学特征
|
Abstract:
湘东北曲溪金矿床位于江南造山带中段黄金洞金矿田,其赋存于新元古界冷家溪群浅变质岩系中,受NNE-NE向长平断裂及其次级断裂控制;主要发育石英–硫化物型、破碎蚀变角砾岩型和蚀变岩型三种矿化。金属矿物主要为自然金、黄铁矿、毒砂、黄铜矿、方铅矿和闪锌矿等;非金属矿物主要为石英、方解石、绿泥石与绢云母等。金以自然金和不可见金两种形式产出,其中不可见金主要为赋存于金属硫化物中的“固溶体金”和“纳米级自然金”。根据脉体穿插关系和矿物共生组合,将曲溪金矿床成矿作用划分为:I. 石英–毒砂–黄铁矿–绢云母阶段;II. 石英–金–多金属硫化物–绢云母阶段;III. 石英–绿泥石–方解石阶段。电子探针分析表明,曲溪金矿床黄铁矿中As含量达0.008~2.92 wt%,为含砷黄铁矿。砷与硫具有一定负相关关系,表明少量砷取代硫进入黄铁矿晶格,这增加了Au进入黄铁矿的机率。除此以外,铜与金具有较弱的正相关性,银含量偏低。热液黄铁矿中钴、镍含量及其比值波动较大,部分Co/Ni比值小于1,说明在热液运输或沉淀过程中,流体与沉积地层发生了强烈的物质交换。曲溪金矿床地质、硫化物组构特征以及元素地球化学数据指示:硫化作用导致流体中硫氢络合物分解是不可见金的主要沉淀机制;流体压力波动导致的流体不混溶是可见金的主要形成机制。
Quxi gold deposit of the Huangjindong goldfield is located in the northeast Hunan province in the central part of the Jiangnan orogenic belt. It is hosted by the Neoproterozoic slate of the Lengjiaxi Group and controlled by the Chang-Ping Fault and its secondary faults. Three mineralization styles include quartz-sulfide veins, altered breccia, and disseminated and stockworks. Ore minerals are mainly native gold, pyrite, arsenopyrite, chalcopyrite, galena, and sphalerite. Gangue minerals are mainly quartz, calcite, chlorite, and sericite. Gold occurs in the form of native gold and invisible gold. The invisible gold is in the form of “solid solution gold” and “nanometer native gold” in sulfides. Based on the cross-cutting relationships and assemblage associations, mineralization stages at the Quxi deposit could be divided into: I. quartz-arsenopyrite-pyrite-sericite stage; II. quartz-gold-polymetallic sulfide stage; III. quartz-chlorite-calcite stage. The electron probe analysis shows that the pyrite at Quxi gold deposit is arsenic bearing pyrite with arsenic content of 0.008~2.92 wt%. The arsenic in pyrite shows a negative relationship with sulfur, which means minor arsenic replaced the sulfur in pyrite by isomorphism. This improved the opportunity that gold incorporates into pyrite. Besides, gold and copper show a weak positive correlation, and silver content is very low in pyrite. The values of Co and Ni content and their ratio fluctuate remarkably, and the Co/Ni ratio is <1 in the hydrothermal pyrite, which indicates intense material exchange occurred between fluid and sedimentary rocks. Together with the geological features, textures of pyrite and its elemental compositions, it is suggested that sulfidation resulted in the instability of the sulfur hydrogen complex and deposition of invisible gold while the fluid immiscibility caused by fluid pressure fluctuation resulted in the deposition of native gold.
[1] | Deng, J. and Wang, Q.F. (2016) Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Framework. Gondwana Research, 36, 219-274. https://doi.org/10.1016/j.gr.2015.10.003 |
[2] | Yang, L.Q., Deng, J., Wang, Z.L., Guo, L.N., Li, R.H., Groves, D.I., Danyushevsky, L., Zhang, C, Zheng, X.L. and Zhao, H. (2016) Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Economic Geology, 111, 105-126.
https://doi.org/10.2113/econgeo.111.1.105 |
[3] | Xu, D.R., Deng, T., Chi, G.X., Wang, Z.L., Zou, F.H., Zhang, J.L. and Zou, S.H. (2017) Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological Characteristics, Ore Deposit Type and Geodynamic Setting. Ore Geology Reviews, 88, 565-618. https://doi.org/10.1016/j.oregeorev.2017.02.004 |
[4] | Deng, J., Yang, L.Q., Groves, D.I., Zhang, L., Qiu, K.F. and Wang, Q.F. (2020) An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208, Article ID: 103274.
https://doi.org/10.1016/j.earscirev.2020.103274 |
[5] | 孙思辰, 张良, 吴圣刚, 等. 江南造山带黄金洞金矿床成矿机制: 矿物形成环境与金成矿物理化学条件制约[J]. 岩石学报, 2018, 34(5): 1469-1483. |
[6] | Zhang, L., Yang, L.Q., Groves, D.I., Sun, S.C., Liu, Y., Wang, J.Y., Li, R.H., Wu, S.G., Gao, L., Guo, J.L., Chen, X.G. and Chen, J.H. (2019) An Overview of Timing and Structural Geometry of Gold, Gold-Antimony and Antimony Mineralization in the Jiangnan Orogen, Southern China. Ore Geology Reviews, 115, Article ID: 103173.
https://doi.org/10.1016/j.oregeorev.2019.103173 |
[7] | 李太兵, 李永光, 易建春. 湖南曲溪金矿床成矿作用及成矿物质来源探讨[J]. 黄金科学技术, 2012, 20(4): 104-108. |
[8] | 赵亮, 李己华. 湘东北曲溪矿区花岗岩中钼矿化的发现及其找矿意义[J]. 甘肃冶金, 2016, 38(2): 76-79. |
[9] | 李己华, 吴继承. 湖南曲溪金矿成矿规律与成矿预测[J]. 黄金科学技术, 2013, 20(5): 16-21. |
[10] | Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C. (2005) Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 |
[11] | Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J. and Ewing, R.C. (2014) The Coupled Geochemistry of Au and As in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140, 644-670. https://doi.org/10.1016/j.gca.2014.05.045 |
[12] | Sun, S.C., Zhang, L., Li, R.H., Wen, T., Xu, H., Wang, J.Y., Li, Z.Q., Zhang, F., Zhang, X.J. and Guo, H. (2019) Process and Mechanism of Gold Mineralization at the Zhengchong Gold Deposit, Jiangnan Orogenic Belt: Evidence from the Arsenopyrite and Chlorite Mineral Thermometers. Minerals, 9, 133. https://doi.org/10.3390/min9020133 |
[13] | 卢焕章, 朱笑青, 单强, 等. 金矿床中金与黄铁矿和毒砂的关系[J]. 矿床地质, 2013, 32(4): 823-842. |
[14] | 刘亮明, 彭省临, 吴延之. 湘东北地区脉型金矿床成矿构造特征及构造成矿机制[J]. 大地构造与成矿学, 1997, 21(3): 197-204. |
[15] | 毛景文. 湖南万古地区金矿地质与成因[M]. 北京: 原子能出版社, 1997. |
[16] | 关绍曾. 湖南衡阳盆地东塘组的时代及白垩系与第三系的界线[J]. 地质学报, 1989, 63(1): 59-72. |
[17] | 唐晓珊. 湖南冷家溪群岩石地层的研究[J]. 湖南地质, 1989, 8(2): 1-9. |
[18] | 孙海清, 黄建中, 郭乐群, 等. 湖南冷家溪群划分及同位素年龄约束[J]. 华南地质与矿产, 2012, 28(1): 20-26. |
[19] | 张录秀, 金维群. 湘东北燕山期花岗岩[J]. 华南地质与矿产, 1999(4): 1-9. |
[20] | 肖拥军, 陈广浩. 湘东北大洞-万古地区金矿构造成矿定位机制的初步研究[J]. 大地构造与成矿学, 2004, 28(1): 38-44. |
[21] | 文志林, 邓腾, 董国军, 等. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 2016, 40(2): 281-294. |
[22] | Zhang, L., Groves, D.I., Yang, L.Q., Sun, S.C., Weinberg, R.F., Wang, J.Y., Wu, S.G., Gao, L., Yuan, L.L. and Li, R.H. (2020) Utilization of Pre-Existing Competent and Barren Quartz Veins as Hosts to Later Orogenic Gold Ores at Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Mineralium Deposita, 55, 363-380.
https://doi.org/10.1007/s00126-019-00904-5 |
[23] | 贺转利, 许德如, 陈广浩, 等. 湘东北燕山期陆内碰撞造山带金多金属成矿地球化学[J]. 矿床地质, 2004, 23(1): 39-51. |
[24] | 刘东升. 湘东北地区脉型金矿床成矿构造特征及构造成矿机制[J]. 低碳世界, 2014(24): 191-192. |
[25] | Zhang, L., Yang, L.Q., Groves, D.I., Liu, Y., Sun, S.C., Qi, P., Wu, S.G. and Peng, J.S. (2018) Geological and Isotopic Constraints on Ore Genesis, Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Ore Geology Reviews, 99, 264-281. https://doi.org/10.1016/j.oregeorev.2018.06.013 |
[26] | 曾毅. 扫描电镜和电子探针的基础及应用[M]. 上海: 上海科学技术出版社, 2009. |
[27] | 杨立强, 李瑞红, 高雪, 等. 胶东金矿床中关键金属超常富集特征与机理初探[J]. 岩石学报, 2020, 36(5): 1285-1314. |
[28] | Yang, L.Q., Deng, J., Guo, L.N., Wang, Z.L., Li, X.Z. and Li, J.L. (2016) Origin and Evolution of Ore Fluid and Gold Deposition Processes at the Giant Taishang Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Reviews, 72, 585-602. https://doi.org/10.1016/j.oregeorev.2015.08.021 |
[29] | Yang, L.Q., Guo, L.N., Wang, Z.L., Zhao, R.X., Song, M.C. and Zheng, X.L., (2017) Timing and Mechanism of Gold Mineralization at the Wang'ershan Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Reviews, 88, 491-510. https://doi.org/10.1016/j.oregeorev.2016.06.027 |
[30] | Deng, J., Qiu, K.F., Wang, Q.F., Goldfarb, R.J., Yang, L.Q., Zi, J.W., Geng, J.Z. and Ma, Y. (2020a) In-Situ Dating of Hydrothermal Monazite and Implications on the Geodynamic Controls of Ore Formation in the Jiaodong Gold Province, Eastern China. Economic Geology, 115, 671-685. https://doi.org/10.5382/econgeo.4711 |
[31] | Deng, J., Wang, C.M., Bagas, L., Santosh, M. and Yao, E. (2018) Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182, 251-272.
https://doi.org/10.1016/j.earscirev.2018.05.001 |
[32] | Deng, J., Wang, Q.F., Santosh, M., Liu, X.F., Liang, Y.Y., Yang, L.Q., Zhao, R. and Yang, L. (2020) Remobilization of Metasomatized Mantle Lithosphere: A New Model for the Jiaodong Gold Province, Eastern China. Mineralium Deposita, 55, 257-274. https://doi.org/10.1007/s00126-019-00925-0 |
[33] | Deng, J., Yang, L.Q., Groves, D.I., Zhang, L., Qiu, K.F. and Wang, Q.F., (2020) An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208, Article ID: 103274.
https://doi.org/10.1016/j.earscirev.2020.103274 |