全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光相干断层扫描血管成像在青光眼临床中的应用进展
Advance in the Clinical Application of Optical Coherence Tomography Angiography in Glaucoma

DOI: 10.12677/HJO.2020.93022, PP. 172-178

Keywords: 光相干断层扫描血管成像,青光眼,血管密度
Optical Coherence Tomography Angiography
, Glaucoma, Vessel Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

光相干断层扫描血管成像(optical coherence tomography angiography, OCTA)是近年来新兴的血管成像技术,作为一种无创性、高效的检查工具,它能根据不同层次显示视网膜、脉络膜的血管密度并对其进行量化。目前认为眼部循环的改变与青光眼的病情进展密切相关,利用OCTA获得的视网膜血管密度与结构、功能参数有着密切的关系,结合不同检查结果可为青光眼的诊治及评估病情严重程度提供可靠参考。
Optical coherence tomography angiography (OCTA) is a new technique of vascular imaging. As a non-invasive and efficient diagnostic tool, OCTA can display and quantify the vascular density of retina and choroid according to different levels. At present, it is believed that the changes of ocular circulation are closely related to the progression of glaucoma, and the retinal vascular density obtained by OCTA is closely related to the structure and function parameters. Combining different examination results can provide reliable reference for diagnosis and treatment of glaucoma and assessment of severity of the disease.

References

[1]  Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma: A Review. JAMA, 311, 1901-1911.
https://doi.org/10.1001/jama.2014.3192
[2]  Flammer, J., Orgül, S., Costa, V.P., et al. (2002) The Impact of Ocular Blood Flow in Glaucoma. Progress in Retinal and Eye Research, 21, 359-393.
https://doi.org/10.1016/S1350-9462(02)00008-3
[3]  Cherecheanu, A.P., Garhofer, G., Schmidl, D., Werkmeister, R. and Schmetterer, L. (2013) Ocular Perfusion Pressure and Ocular Blood Flow in Glaucoma. Current Opinion in Pharmacology, 13, 36-42.
https://doi.org/10.1016/j.coph.2012.09.003
[4]  Garh?fer, G., Fuchsj?ger-Mayrl, G., Vass, C., Pemp, B., Hommer, A. and Schmetterer, L. (2010) Retrobulbar Blood Flow Velocities in Open Angle Glaucoma and Their Association with Mean Arterial Blood Pressure. Investigative Ophthalmology & Visual Science, 51, 6652-6657.
https://doi.org/10.1167/iovs.10-5490
[5]  Campbell, J.P., Zhang, M., Hwang, T.S., et al. (2017) Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Scientific Reports, 7, Article No. 42201.
https://doi.org/10.1038/srep42201
[6]  Sambhav, K., Grover, S. and Chalam, K.V. (2017) The Application of Optical Coherence Tomography Angiography in Retinal Diseases. Survey of Ophthalmology, 62, 838-866.
https://doi.org/10.1016/j.survophthal.2017.05.006
[7]  Kashani, A.H., Chen, C.L., Gahm, J.K., et al. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002
[8]  Akil, H., Chopra, V., Al-Sheikh, M., et al. (2017) Swept-Source OCT Angiography Imaging of the Macular Capillary Network in Glaucoma. British Journal of Ophthalmology, 102, 515-519.
[9]  Lommatzsch, C., Rothaus, K., Koch, J.M., Heinz, C. and Grisanti, S. (2018) OCTA Vessel Density Changes in the Macular Zone in Glaucomatous Eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 1499-1508.
https://doi.org/10.1007/s00417-018-3965-1
[10]  Chen, H.S., Liu, C.H., Wu, W.C., Tseng, H.J. and Lee, Y.S. (2017) Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Investigative Ophthalmology & Visual Science, 58, 3637-3645.
https://doi.org/10.1167/iovs.17-21846
[11]  Rao, H.L., Pradhan, Z.S., Weinreb, R.N., et al. (2016) Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 171, 75-83.
https://doi.org/10.1016/j.ajo.2016.08.030
[12]  Kim, Y.J., Kang, M.H., Cho, H.Y., Lim, H.W. and Seong, M. (2014) Comparative Study of Macular Ganglion Cell Complex Thickness Measured by Spectral-Domain Optical Coherence Tomography in Healthy Eyes, Eyes with Preperimetric Glaucoma, and Eyes with Early Glaucoma. Japanese Journal of Ophthalmology, 58, 244-251.
https://doi.org/10.1007/s10384-014-0315-7
[13]  Pazos, M., Dyrda, A.A., Biarnés, M., et al. (2017) Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes. Ophthalmology, 124, 1218-1228.
https://doi.org/10.1016/j.ophtha.2017.03.044
[14]  Hou, H., Moghimi, S., Zangwill, L.M., et al. (2019) Macula Vessel Density and Thickness in Early Primary Open- Angle Glaucoma. American Journal of Ophthalmology, 199, 120-132.
https://doi.org/10.1016/j.ajo.2018.11.012
[15]  Moghimi, S., Zangwill, L.M., Penteado, R.C., et al. (2018) Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 125, 1720-1728.
https://doi.org/10.1016/j.ophtha.2018.05.006
[16]  Kim, J.S., Kim, Y.K., Baek, S.U., et al. (2020) Topographic Correlation between Macular Superficial Microvessel Density and Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma-Suspect and Early Normal-Tension Glaucoma. British Journal of Ophthalmology, 104, 104-109.
https://doi.org/10.1136/bjophthalmol-2018-313732
[17]  Yarmohammadi, A., Zangwill, L.M., Diniz-Filho, A., et al. (2016) Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology, 123, 2498-2508.
https://doi.org/10.1016/j.ophtha.2016.08.041
[18]  Jeon, S.J., Park, H.L. and Park, C.K. (2018) Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients. Scientific Reports, 8, Article No. 16009.
https://doi.org/10.1038/s41598-018-34417-4
[19]  Sommer, A., Tielsch, J.M., Katz, J., et al. (1991) Relationship between Intraocular Pressure and Primary Open Angle Glaucoma among White and Black Americans. The Baltimore Eye Survey. Archives of Ophthalmology, 109, 1090- 1095.
https://doi.org/10.1001/archopht.1991.01080080050026
[20]  Kiyota, N., Shiga, Y., Ichinohasama, K., et al. (2018) The Impact of Intraocular Pressure Elevation on Optic Nerve Head and Choroidal Blood Flow. Investigative Ophthalmology & Visual Science, 59, 3488-3496.
https://doi.org/10.1167/iovs.18-23872
[21]  Iwase, T., Akahori, T., Yamamoto, K., Ra, E. and Terasaki, H. (2018) Evaluation of Optic Nerve Head Blood Flow in Response to Increase of Intraocular Pressure. Scientific Reports, 8, Article No. 17235.
https://doi.org/10.1038/s41598-018-35683-y
[22]  Park, J.H., Yoo, C. and Kim, Y.Y. (2019) Peripapillary Vessel Density in Young Patients with Open-Angle Glaucoma: Comparison between High-Tension and Normal-Tension Glaucoma. Scientific Reports, 9, Article No. 19160.
https://doi.org/10.1038/s41598-019-55707-5
[23]  Moghimi, S., SafiZadeh, M., Fard, M.A., et al. (2019) Changes in Optic Nerve Head Vessel Density after Acute Primary Angle Closure Episode. Investigative Ophthalmology & Visual Science, 60, 552-558.
https://doi.org/10.1167/iovs.18-25915
[24]  Kim, J.A., Kim, T.W., Lee, E.J., Girard, M.J.A. and Mari, J.M. (2018) Microvascular Changes in Peripapillary and Optic Nerve Head Tissues after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 59, 4614-4621.
https://doi.org/10.1167/iovs.18-25038
[25]  Shin, J.W., Sung, K.R., Uhm, K.B., et al. (2017) Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 58, 5993-5999.
https://doi.org/10.1167/iovs.17-22787
[26]  Chen, C.L., Bojikian, K.D., Xin, C., et al. (2016) Repeatability and Reproducibility of Optic Nerve Head Perfusion Measurements Using Optical Coherence Tomography Angiography. Journal of Biomedical Optics, 21, 65002.
https://doi.org/10.1117/1.JBO.21.6.065002
[27]  Shoji, T., Zangwill, L.M., Akagi, T., et al. (2017) Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. American Journal of Ophthalmology, 182, 107-117.
https://doi.org/10.1016/j.ajo.2017.07.011
[28]  Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R. and Staurenghi, G. (2018) Optical Coherence Tomography Angiography. Progress in Retinal and Eye Research, 64, 1-55.
https://doi.org/10.1016/j.preteyeres.2017.11.003
[29]  Enders, C., Lang, G.E., Dreyhaupt, J., Loidl, M., Lang, G.K. and Werner, J.U. (2019) Quantity and Quality of Image Artifacts in Optical Coherence Tomography Angiography. PLoS ONE, 14, e0210505.
https://doi.org/10.1371/journal.pone.0210505
[30]  Spaide, R.F., Fujimoto, J.G. and Waheed, N.K. (2015) Image Artifacts in Optical Coherence Tomography Angiography. Retina, 35, 2163-2180.
https://doi.org/10.1097/IAE.0000000000000765
[31]  Chang, R., Chu, Z., Burkemper, B., et al. (2019) Effect of Scan Size on Glaucoma Diagnostic Performance Using OCT Angiography En Face Images of the Radial Peripapillary Capillaries. Journal of Glaucoma, 28, 465-472.
https://doi.org/10.1097/IJG.0000000000001216
[32]  Rao, H.L., Pradhan, Z.S., Suh, M.H., Moghimi, S., Mansouri, K. and Weinreb, R.N. (2020) Optical Coherence Tomography Angiography in Glaucoma. Journal of Glaucoma, 29, 312-321.
https://doi.org/10.1097/IJG.0000000000001463

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133