|
光相干断层扫描血管成像在青光眼临床中的应用进展
|
Abstract:
[1] | Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma: A Review. JAMA, 311, 1901-1911. https://doi.org/10.1001/jama.2014.3192 |
[2] | Flammer, J., Orgül, S., Costa, V.P., et al. (2002) The Impact of Ocular Blood Flow in Glaucoma. Progress in Retinal and Eye Research, 21, 359-393. https://doi.org/10.1016/S1350-9462(02)00008-3 |
[3] | Cherecheanu, A.P., Garhofer, G., Schmidl, D., Werkmeister, R. and Schmetterer, L. (2013) Ocular Perfusion Pressure and Ocular Blood Flow in Glaucoma. Current Opinion in Pharmacology, 13, 36-42.
https://doi.org/10.1016/j.coph.2012.09.003 |
[4] | Garh?fer, G., Fuchsj?ger-Mayrl, G., Vass, C., Pemp, B., Hommer, A. and Schmetterer, L. (2010) Retrobulbar Blood Flow Velocities in Open Angle Glaucoma and Their Association with Mean Arterial Blood Pressure. Investigative Ophthalmology & Visual Science, 51, 6652-6657. https://doi.org/10.1167/iovs.10-5490 |
[5] | Campbell, J.P., Zhang, M., Hwang, T.S., et al. (2017) Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Scientific Reports, 7, Article No. 42201.
https://doi.org/10.1038/srep42201 |
[6] | Sambhav, K., Grover, S. and Chalam, K.V. (2017) The Application of Optical Coherence Tomography Angiography in Retinal Diseases. Survey of Ophthalmology, 62, 838-866. https://doi.org/10.1016/j.survophthal.2017.05.006 |
[7] | Kashani, A.H., Chen, C.L., Gahm, J.K., et al. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002 |
[8] | Akil, H., Chopra, V., Al-Sheikh, M., et al. (2017) Swept-Source OCT Angiography Imaging of the Macular Capillary Network in Glaucoma. British Journal of Ophthalmology, 102, 515-519. |
[9] | Lommatzsch, C., Rothaus, K., Koch, J.M., Heinz, C. and Grisanti, S. (2018) OCTA Vessel Density Changes in the Macular Zone in Glaucomatous Eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 1499-1508.
https://doi.org/10.1007/s00417-018-3965-1 |
[10] | Chen, H.S., Liu, C.H., Wu, W.C., Tseng, H.J. and Lee, Y.S. (2017) Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Investigative Ophthalmology & Visual Science, 58, 3637-3645. https://doi.org/10.1167/iovs.17-21846 |
[11] | Rao, H.L., Pradhan, Z.S., Weinreb, R.N., et al. (2016) Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 171, 75-83.
https://doi.org/10.1016/j.ajo.2016.08.030 |
[12] | Kim, Y.J., Kang, M.H., Cho, H.Y., Lim, H.W. and Seong, M. (2014) Comparative Study of Macular Ganglion Cell Complex Thickness Measured by Spectral-Domain Optical Coherence Tomography in Healthy Eyes, Eyes with Preperimetric Glaucoma, and Eyes with Early Glaucoma. Japanese Journal of Ophthalmology, 58, 244-251.
https://doi.org/10.1007/s10384-014-0315-7 |
[13] | Pazos, M., Dyrda, A.A., Biarnés, M., et al. (2017) Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes. Ophthalmology, 124, 1218-1228.
https://doi.org/10.1016/j.ophtha.2017.03.044 |
[14] | Hou, H., Moghimi, S., Zangwill, L.M., et al. (2019) Macula Vessel Density and Thickness in Early Primary Open- Angle Glaucoma. American Journal of Ophthalmology, 199, 120-132. https://doi.org/10.1016/j.ajo.2018.11.012 |
[15] | Moghimi, S., Zangwill, L.M., Penteado, R.C., et al. (2018) Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 125, 1720-1728.
https://doi.org/10.1016/j.ophtha.2018.05.006 |
[16] | Kim, J.S., Kim, Y.K., Baek, S.U., et al. (2020) Topographic Correlation between Macular Superficial Microvessel Density and Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma-Suspect and Early Normal-Tension Glaucoma. British Journal of Ophthalmology, 104, 104-109. https://doi.org/10.1136/bjophthalmol-2018-313732 |
[17] | Yarmohammadi, A., Zangwill, L.M., Diniz-Filho, A., et al. (2016) Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology, 123, 2498-2508.
https://doi.org/10.1016/j.ophtha.2016.08.041 |
[18] | Jeon, S.J., Park, H.L. and Park, C.K. (2018) Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients. Scientific Reports, 8, Article No. 16009.
https://doi.org/10.1038/s41598-018-34417-4 |
[19] | Sommer, A., Tielsch, J.M., Katz, J., et al. (1991) Relationship between Intraocular Pressure and Primary Open Angle Glaucoma among White and Black Americans. The Baltimore Eye Survey. Archives of Ophthalmology, 109, 1090- 1095. https://doi.org/10.1001/archopht.1991.01080080050026 |
[20] | Kiyota, N., Shiga, Y., Ichinohasama, K., et al. (2018) The Impact of Intraocular Pressure Elevation on Optic Nerve Head and Choroidal Blood Flow. Investigative Ophthalmology & Visual Science, 59, 3488-3496.
https://doi.org/10.1167/iovs.18-23872 |
[21] | Iwase, T., Akahori, T., Yamamoto, K., Ra, E. and Terasaki, H. (2018) Evaluation of Optic Nerve Head Blood Flow in Response to Increase of Intraocular Pressure. Scientific Reports, 8, Article No. 17235.
https://doi.org/10.1038/s41598-018-35683-y |
[22] | Park, J.H., Yoo, C. and Kim, Y.Y. (2019) Peripapillary Vessel Density in Young Patients with Open-Angle Glaucoma: Comparison between High-Tension and Normal-Tension Glaucoma. Scientific Reports, 9, Article No. 19160.
https://doi.org/10.1038/s41598-019-55707-5 |
[23] | Moghimi, S., SafiZadeh, M., Fard, M.A., et al. (2019) Changes in Optic Nerve Head Vessel Density after Acute Primary Angle Closure Episode. Investigative Ophthalmology & Visual Science, 60, 552-558.
https://doi.org/10.1167/iovs.18-25915 |
[24] | Kim, J.A., Kim, T.W., Lee, E.J., Girard, M.J.A. and Mari, J.M. (2018) Microvascular Changes in Peripapillary and Optic Nerve Head Tissues after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 59, 4614-4621. https://doi.org/10.1167/iovs.18-25038 |
[25] | Shin, J.W., Sung, K.R., Uhm, K.B., et al. (2017) Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 58, 5993-5999. https://doi.org/10.1167/iovs.17-22787 |
[26] | Chen, C.L., Bojikian, K.D., Xin, C., et al. (2016) Repeatability and Reproducibility of Optic Nerve Head Perfusion Measurements Using Optical Coherence Tomography Angiography. Journal of Biomedical Optics, 21, 65002.
https://doi.org/10.1117/1.JBO.21.6.065002 |
[27] | Shoji, T., Zangwill, L.M., Akagi, T., et al. (2017) Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. American Journal of Ophthalmology, 182, 107-117.
https://doi.org/10.1016/j.ajo.2017.07.011 |
[28] | Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R. and Staurenghi, G. (2018) Optical Coherence Tomography Angiography. Progress in Retinal and Eye Research, 64, 1-55. https://doi.org/10.1016/j.preteyeres.2017.11.003 |
[29] | Enders, C., Lang, G.E., Dreyhaupt, J., Loidl, M., Lang, G.K. and Werner, J.U. (2019) Quantity and Quality of Image Artifacts in Optical Coherence Tomography Angiography. PLoS ONE, 14, e0210505.
https://doi.org/10.1371/journal.pone.0210505 |
[30] | Spaide, R.F., Fujimoto, J.G. and Waheed, N.K. (2015) Image Artifacts in Optical Coherence Tomography Angiography. Retina, 35, 2163-2180. https://doi.org/10.1097/IAE.0000000000000765 |
[31] | Chang, R., Chu, Z., Burkemper, B., et al. (2019) Effect of Scan Size on Glaucoma Diagnostic Performance Using OCT Angiography En Face Images of the Radial Peripapillary Capillaries. Journal of Glaucoma, 28, 465-472.
https://doi.org/10.1097/IJG.0000000000001216 |
[32] | Rao, H.L., Pradhan, Z.S., Suh, M.H., Moghimi, S., Mansouri, K. and Weinreb, R.N. (2020) Optical Coherence Tomography Angiography in Glaucoma. Journal of Glaucoma, 29, 312-321. https://doi.org/10.1097/IJG.0000000000001463 |