全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高输出功率温差发电系统的研究
Studies on the High Output Thermoelectric Power Generation Systems

DOI: 10.12677/SE.2020.103003, PP. 23-33

Keywords: 温差发电,热电效率,高功率输出,多级联发电,原位热电测试
Thermoelectricity Generation
, Thermoelectric Efficiency, High Power Harvester, Multi-Stack TEPG, In Situ Characterization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在研发某种高效率、高输出功率的温差发电技术;并对该技术在热电设备应用中的多种工作条件下的功率进行了系统的研究。首先讨论对温差发电模块及系统进行了建模、设计和建造;其次汇报一种最先进的热电模块测量仪器的研究成果,该仪器可对关键热电特性参数进行现场实时测量。此外,对多种热电特性进行了原位实时表征,这些包括效率、电流电压(即I-V)曲线、功率电压(P-V)曲线、外力响应曲线以及功率与温度(P-T)响应曲线。经过深入研究并建造了大功率热能收集装置;对热电工程设备做出了重要的创新,并很好应用于尾气热能的废热收集利用的研发项目。最后,研究结果显示,三级联设备的仿真计算效率为19%以上,双级联的实验测试效率为10.6%以上。这些结果与现有技术相比,其输出功率和热电效率都得到了很大的提高。
An alternative energy technology based on thermoelectricity generation is investigated and its power is systematically investigated under various work conditions in thermoelectric applications. In addition, authors have modelled, designed, and constructed the thermoelectric power system. Moreover, they have invented a state-of-the-art table-top instrument that may evaluate several critical thermoelectric characters in situ. Several aspects of the thermoelectric features are characterized in situ that include the efficiency, force response curve, current-voltage (i.e., I-V) curve, power-voltage (P-V) curve, and the power versus temperature (P-T) responses. Furthermore, they have successfully built a high-power heat harvester and have applied to the automotive case study in details. Finally, they have obtained the multi-stack thermoelectric devices that have improved characters; e.g., both the power output and the thermoelectric efficiency have improved in comparison to the devices commercially available. The investigation leads to 19% efficiency in triple stack devices and 10.6% in the dual-stack one.

References

[1]  乌元春. 170多国领导人齐聚纽约联合国总部将共同签署《巴黎协定》[EB/OL]. http://world.huanqiu.com/exclusive/2016-04/8819879.html?agt=15438, 2020-01-13.
[2]  Brass, J.N., Carley, S., Maclean, L.M., et al. (2012) Power for Development: A Review of Distributed Generation Projects in the Developing World. Annual Review of Environment and Resources, 37, 107-136.
https://doi.org/10.1146/annurev-environ-051112-111930
[3]  Clark, W.W. (2010) Sustainable Communities De-sign Handbook. Elsevier Press, Amsterdam, 65-81.
[4]  Chen, G. (2011) Theoretical Efficiency of Solar Thermoelectric Energy Generators. Journal of Applied Physics, 109, Article ID: 104908.
https://doi.org/10.1063/1.3583182
[5]  Deng, Y.G. and Liu, J. (2009) Recent Advances in Direct Solar Thermal Power Generation. Journal of Renewable Sustainable Energy, 1, Article ID: 052701.
https://doi.org/10.1063/1.3212675
[6]  Tritt, T.M. and Subramanian, M.A. (2006) Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bulletin, 31, 188-198.
https://doi.org/10.1557/mrs2006.44
[7]  Baranowski, L.L., Warren, E.L. and Toberer, E.S. (2014) High-Temperature High-Efficiency Solar Thermoelectric Generators. Energy Procedia, 49, 1460-1469.
https://doi.org/10.1016/j.egypro.2014.03.155
[8]  Thomson, W. (1857) On a Mechanical Theory of Thermoelectric Currents. Proceedings of the Royal Society of Edinburgh, 3, 91-98.
https://doi.org/10.1017/S0370164600027310
[9]  Weisse, J.M. (2010) Thermoelectric Generators. http://large.stanford.edu/courses/2010/ph240/weisse1
[10]  Jin, A.J., Liu, D.W., Peng, W.B., et al. (2013) Research and Applications of the High-Power Thermoelectric Generation Technology. Sustainable Energy, 3, 1-7.
[11]  Yang, D.J. and Yin, H.M. (2011) Energy Conversion Efficiency of a Novel Hybrid Solar System for Photovoltaic, Thermoelectric, and Heat Utilization. IEEE Transactions on Energy Conversion, 26, 662.
https://doi.org/10.1109/TEC.2011.2112363
[12]  Gao, M. and Rowe, D.M. (2007) Conversion Efficiency of Thermoelectric Combustion Systems. IEEE Transactions on Energy Conversion, 22, 528-534.
https://doi.org/10.1109/TEC.2006.877375
[13]  Hua, T., Na, J., Qi, J., et al. (2015) Comparison of Segmented and Traditional Thermoelectric Generator for Waste Heat Recovery of Diesel Engine. Energy Procedia, 75, 590-596.
https://doi.org/10.1016/j.egypro.2015.07.461
[14]  白忠恺. 中高温余热回收半导体温差发电热系统设计研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2009.
[15]  Cook, B., Chan, T., Dezsi, G., et al. (2014) High-Performance Three-Stage Cascade Thermo-Electric Devices with 20% Efficiency. Electronic Materials, 44, 1936-1942.
https://doi.org/10.1007/s11664-014-3600-9
[16]  Mao, J., Liu, Z.H. and Ren, Z.F. (2016) Size Effect in Thermoelectric Materials. NPJ Quantum Materials, 1, Article No. 16028.
https://doi.org/10.1038/npjquantmats.2016.28
[17]  Liu, D.W., Jin, A.J., et al. (2015) Developing Instrumentation to Characterize Thermoelectric Generator Modules. Review of Scientific Instruments, 86, Article ID: 034703.
https://doi.org/10.1063/1.4913745
[18]  Nolas, G., Sharp, J. and Goldsmid, H. (2001) Thermoelectrics Basic Prin-ciples and New Material Developments. Springer, Berlin.
https://doi.org/10.1007/978-3-662-04569-5
[19]  Crane, D., Kossakovski, D. and Bell, L. (2009) Modeling the Building Blocks of a 10% Efficient Segmented Thermoelectric Power Generator. Journal of Electronic Materials, 38, 1382-1386.
https://doi.org/10.1007/s11664-009-0673-y
[20]  Liu, D.W., Jin, A.J., et al. (2016) Preparation and Characterization of Segmented Stacking for Thermoelectric Power Generation. Clean Technologies and Environmental Policy, 18, 1203-1210.
https://doi.org/10.1007/s10098-015-1088-5
[21]  Jin, A.J. and Liu, D.W. (2017) Test System of Thermoelectric Module and Test Method for Thermoelectric Modules: USPCT-16659195. http://www.freepatentsonline.com/y2017/0115245.html
[22]  Solla, S. and Riedel, E. (1981) Vortex Excitations and Specific Heat of the Planar Model in Two Dimensions. Physical Review B Condensed Matter, 23, 6008-6012.
https://doi.org/10.1103/PhysRevB.23.6008
[23]  鲍亮亮, 金安君, 等. 汽车尾气温差发电装置的设计、制作及性能测试[J]. 电源技术, 2016(12): 2463-2468.
[24]  吴高阳, 任国全, 胡仁喜. SolidWorks 2010有限元、虚拟样机与流场分析从入门到精通[M]. 北京: 机械工业出版社, 2011.
[25]  张志涌. 精通MATLAB6.5 [M]. 北京: 北京航空航天出版社, 2003.
[26]  Jin, A.J. and Zhang, Y.M. (2017) Systematic Studies on Building the High Output Thermoelectric Power Generation. International Journal of Science, Technology and Society, 4, 112-119.
https://doi.org/10.11648/j.ijsts.20170504.19
[27]  Wojciechowski, K., Zvbala, R., Leszczynski, J., et al. (2012) Performance Characterization of High-Efficiency Segmented Bi2Te3/CoSb3 Unicouples for Thermoelectric Generators. AIP Conference Proceedings, 1449, 467.
https://doi.org/10.1063/1.4731597
[28]  Hu, X.K., Jood, P., Ohta, M., et al. (2016) Power Generation from Nanostructured PbTe-Based Thermoelectrics: Comprehensive Development from Materials to Modules. Energy & En-vironmental Science, 9, 517-529.
https://doi.org/10.1039/C5EE02979A

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133