全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

角膜曲率及其变化在人工晶体度数测量的研究进展
Progress of Corneal Curvature and Its Variation in IOL Power Calculation

DOI: 10.12677/HJO.2020.93024, PP. 182-190

Keywords: 角膜曲率,白内障,人工晶体度数测量
Corneal Curvature
, Cataract, IOL Power Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

白内障是一种发病机制不完全明确的疾病,也是当今眼科的常见病和多发病。现较流行的术式为白内障超声乳化吸除 + 人工晶体植入术。术后患者视力的提高及视觉质量的改善与术前人工晶体度数的准确测量十分相关。而准确的人工晶体度数测量受到多种因素的影响,其中角膜曲率的变化更是人工晶体度数测量的重要影响因素之一。本文就角膜曲率及人工晶体屈光度测量的定义、方法与影响测量结果的相关因素等方面予以综述,对以后的临床工作提供参考价值。
Cataract is common and frequently-occurring disease in ophthalmology nowadays, but its pathogenesis is not completely clear. With the development of medical science, the current surgical method is cataract phacoemulsification combined with IOL implantation. For patients with cataract, the visual quality is closely related to the accuracy of intraocular lens. Considering that the degree of intraocular lens is essentially affected by the changes of keratometry. Therefore, the effect of keratometry on the IOL Power Calculation is a direction worth exploring, which will be valuable for clinical medicine. In this paper, the definitions, methods and effects of IOL Power and Keratometry’s Calculation and the related factors are reviewed.

References

[1]  Preetha, R., Goel, P., Patel, N., et al. (2003) Clear Lens Extraction with Intraocular Lens Miplantation for Hyperopia. Journal of Cataract & Refractive Surgery, 29, 895-899.
https://doi.org/10.1016/S0886-3350(02)01979-X
[2]  Retzlaff, J.A., Sanders, D.R. and Kraft, M.C. (1990) Development of the SRK/T intraocular Lens Implant Power Calculation Formula. Journal of Cataract & Refractive Surgery, 16, 333-340.
https://doi.org/10.1016/S0886-3350(13)80705-5
[3]  Holiday, J.T., Prager, T.C., Ruiz, R.S., et al. (1986) Improving the Predictability of Intraocular lens Power Calculation. Archives of Ophthalmology, 104, 539-541.
https://doi.org/10.1001/archopht.1986.01050160095020
[4]  Prager, T.C., Hardten, D.R. and Fogal, B.J. (2006) Enhancing Intraocular Lens Outcome Precision: An Evaluation of Axial Length Determinations, Keratometry, and IOL Formulas. Ophthalmology Clinics of North America, 19, 435-448.
[5]  方薇, 张健, 刘大川, 杨惠青, 蒋慧中. 五种公式在短眼轴白内障手术前的应用比较[J]. 中华眼外伤职业眼病杂志, 2017, 39(3): 190-194.
[6]  谭燕, 李灿. 人工晶体度数计算公式的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 95-98.
[7]  Sanders, D., Retzlaff, J. and Kraft, M. (1988) Comparison of the SRK II Formula and Other Second Generation Formulas. Journal of Cataract & Refractive Surgery, 14, 136-141.
https://doi.org/10.1016/S0886-3350(88)80087-7
[8]  Holladay, J.T., Prager, T.C., Chandler, T.Y., et al. (1988) A Three-Part System for Refining Intraocular Lens Power Calculations. Journal of Cataract & Refractive Surgery, 14, 17-24.
https://doi.org/10.1016/S0886-3350(88)80059-2
[9]  Hoffer, K.J. (1993) The Hoffer Q Formula: A Comparison of Theoretic and Regression Formulas. Journal of Cataract & Refractive Surgery, 19, 700-712.
https://doi.org/10.1016/S0886-3350(13)80338-0
[10]  Higis, W., Lege, B., Miller, N., et al. (2000) Comparison of Immersion Ultrasound Biometry and Paaial Coherence Interferometry for Intraocular Lens Calculation According to Haigis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 238, 765-773.
https://doi.org/10.1007/s004170000188
[11]  Holladay, J.T. (2000) Clinical Results Using the Holladay 2 Intraocular Lens Power Formula. Journal of Cataract & Refractive Surgery, 26, 1233-1237.
https://doi.org/10.1016/S0886-3350(00)00376-X
[12]  G?kce, S.E., Zeiter, J.H., Weikert, M.P., et al. (2017) Intraocular Lens Power Calculations in Short Eyes Using 7 Formulas. Journal of Cataract & Refractive Surgery, 43, 892-897.
https://doi.org/10.1016/j.jcrs.2017.07.004
[13]  Olsen, T. and Funding, M. (2012) Ray-Tracing Analysis of Intraocular Lens Power in Situ. Journal of Cataract & Refractive Surgery, 38, 641-647.
https://doi.org/10.1016/j.jcrs.2011.10.035
[14]  Thall, E.H., Reinhart, W.J. and Sabol, D. (1986) Linear Regression Software for Intraocular Lens Implant Power Calculation. American Journal of Ophthalmology, 101, 597-599.
https://doi.org/10.1016/0002-9394(86)90951-7
[15]  McEwan, J.R., Cinotti, D.J. and Maltzmann, B.A. (1985) An Intraocular Lens Power Calculation for the IBM PC and PCjr Computers Using input Variable Selection. American Intra-Ocular Implant Society Journal, 11, 498-503.
https://doi.org/10.1016/S0146-2776(85)80100-2
[16]  Fyodorov, S.N., Galin, M.A. and Linksz, A. (1975) Calculation of the Optical Power of Intraocular Lenses. Investigative Ophthalmology & Visual Science, 14, 625-628.
[17]  Yalvac, I.S., Nurozler, A., Unlu, N., Cetinkaya, F., Kasim, R. and Duman, S. (1996) Calculation of Intraocular Lens Power with the SRK-II formula for Axial High Myopia. European Journal of Ophthalmology, 6, 375-378.
https://doi.org/10.1177/112067219600600405
[18]  Donoso, R., Mura, J.T., Lopez, M. and Papic, A. (2003) Emmetropization at Cataract surgery. Looking for the Best IOL Power Calculation Formula According to the Eye Length. Archivos de la Sociedad Espa?ola de Oftalmología, 78, 477-480.
[19]  Sanders, D.R., Retzlaff, J., Kraft, M.C., et al. (1990) Comparison of the SRK/T Formula and Other Theoretical and Regression Formulas. Journal of Cataract & Refractive Surgery, 16, 341-346.
https://doi.org/10.1016/S0886-3350(13)80706-7
[20]  Hill, W.E. (2002) The Haigis Formula for IOL Power Calculation. Geriatric Opthalmology, 1, 8.
[21]  邹鹏飞. 五种人工晶状体测量公式预测术后屈光度准确性的比较[D]: [硕士学位论文]. 大连: 大连医科大学, 2014.
[22]  Narvaez, J., Zmimerman, G., Smiting, R.D., et al. (2006) Accuracy of Intraocular Lens Power Prediction Using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T Formulas. Journal of Cataract & Refractive Surgery, 32, 2050-2053.
https://doi.org/10.1016/j.jcrs.2006.09.009
[23]  Gavin, E.A. and Hammond, C.J. (2008) Intraocular Lens Power Calculation in Short Eyes. Eye, 22, 935-938.
https://doi.org/10.1038/sj.eye.6702774
[24]  Hoffer, K.J. and Savini, G. (2017) IOL Power Calculation in Short and Long Eyes. The Asia-Pacific Journal of Ophthalmology, 6, 330-331.
[25]  Chen, C., Xu, X., Miao, Y.Y., et al. (2015) Accuracy of Intraocular Lens Power Formulas Involving 148 Eyes with Long Axial Lengths: A Retrospective Chart-Review Study. Journal of Ophthalmology, 2015, Article ID: 976847.
https://doi.org/10.1155/2015/976847
[26]  Evdoxia, T., Li, W. and Thomas, K. (2009) Accuracy of Modem Intraocular Lens Power Calculation Formulas in Refractive Lens Exchange for High Myopia and High Hyperopia. Journal of Cataract & Refractive Surgery, 35, 1181-1189.
https://doi.org/10.1016/j.jcrs.2009.02.026
[27]  Gianluca, C., Francesco, A., Vasiliki, Z., et al. (2015) Accuracy of the Refractive Prediction Determined by Multiple Currently Available Intraocular Lens Power Calculation Formulas in Small Eyes. American Journal of Ophthalmology, 159, 577-583.
https://doi.org/10.1016/j.ajo.2014.11.036
[28]  Youngsub, E., Su, Y.K, Jong, S.S., et al. (2014) Comparison of Hoffer Q and Haigis Formulae for Intraocular Lens Power Calculation According to the Anterior Chamber Depth in Short Eyes. American Journal of Ophthalmology, 157, 818-824.
https://doi.org/10.1016/j.ajo.2013.12.017
[29]  马红蕾, 张斌, 蔡素珍, 等. 硅油填充眼IOL-Master与改良A超人工晶体度数测量比较[J].临床和实验医学杂志, 2013, 12(5): 328-329+332.
[30]  王晶, 武芹, 吴昊, 等. 客观视觉质量分析系统测量人工晶体伪调节力的临床研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 84-85+89.
[31]  王适宜. Zeiss IOL Master与A超测量人工晶体度数的临床比较[J]. 中国临床新医学, 2017, 10(12): 1155-1158.
[32]  李莉, 蓝倩倩, 王璐. 非球面散光型人工晶状体植入治疗合并角膜散光白内障[J]. 中国临床新医学, 2016, 9(1): 1-5.
[33]  Eleftheriadis, H. (2003) IOLMaster Biometry: Refractive Results of 100 Consecutive Cases. British Journal of Ophthalmology, 87, 960-963.
https://doi.org/10.1136/bjo.87.8.960
[34]  Hill, W., Angeles, R. and Otani, T. (2008) Evaluation of a New IOLMaster Algorithm to Measure Axial Length. Journal of Cataract & Refractive Surgery, 34, 920-924.
https://doi.org/10.1016/j.jcrs.2008.02.021
[35]  陈斯, 王丹丹, 赵云娥. 组合信号分析技术在IOL Master测量白内障术前眼轴中的应用[J]. 眼视光学杂志, 2009, 11(3): 161-165.
https://doi.org/10.3760/cma.j.issn.1674-845X.2009.03.001
[36]  McAlinden, C., Wang, Q., Pesudovs, K., et al. (2015) Axial Length Measurement Failure Rates with the IOLMaster and Lenstar LS 900 in Eyes with Cataract. PLoS ONE, 10, e0128929.
https://doi.org/10.1371/journal.pone.0128929
[37]  崔蕊, 杨文利, 李栋军, 等. IOLMaster700与IOLMaster500测量白内障术前眼轴长度的一致性及检出率比较[J]. 中华眼视光学与视觉科学杂志, 2018, 20(11): 659-662.
[38]  Kurian, M., Negalur, N., Das, S., et al. (2016) Biometry with a New Sweptsource Optical Coherence Tomography Biometer: Repeatability and Agreement with an Optical Low-Coherence Reflectometry Device. Journal of Cataract & Refractive Surgery, 42, 577-581.
https://doi.org/10.1016/j.jcrs.2016.01.038
[39]  刘敏, 赵华. 六种仪器测量角膜曲率比较[J]. 中国实用眼科杂志, 2013, 31(2):198-201.
[40]  李新字, 刘磊, 袁菁, 董洁玉, 邹燕. 小同角膜曲率测量方法结果的比较[J]. 国际眼科杂志, 2006, 6(3): 644-646.
[41]  肖伟, 陈明, 盖春柳, 等. 不同仪器测量角膜曲率计算人工晶体屈光度的可行性分析[J]. 中国实用眼科杂志, 2006, 24(4): 407-409.
[42]  Thibos, L.N. and Hong, X. (1999) Clinical Application of the Shack-Hartmann Aberration. Optometry and Vision Science, 76, 817-825.
https://doi.org/10.1097/00006324-199912000-00016
[43]  张晶, 周跃华. 虹膜定位技术在角膜个体化切削手术中应用[J]. 国际眼科纵横, 2008, 32(1): 68-71.
[44]  Fink, W. (2005) Refractive Correction Method for Digital Charge-Coupled Device Recorded Scheimpflug Photographs by Means of Ray Tracing. Journal of Biomedical Optics, 10, Article ID: 024003.
https://doi.org/10.1117/1.1899683
[45]  Olsen, T. and Thorwest, M. (2005) Calibration of Axial Length Measurements with the Zeiss IOLMaster. Journal of Cataract & Refractive Surgery, 31, 1345-1350.
https://doi.org/10.1016/j.jcrs.2004.12.066
[46]  émeth, J., Fekete, O. and Pesztenlehrer, N. (2003) Optical and Ultrasound Measurement of Axial Length and Anterior Chamber Depth for Intraocular Lens Power Calculation. Journal of Cataract & Refractive Surgery, 29, 85-88.
https://doi.org/10.1016/S0886-3350(02)01500-6
[47]  Elbaz, U., Barkana, Y., Gerber, Y., et al. (2007) Comparison of Different Techniques of Anterior Chamber Depth and Keratometric Measurements. American Journal of Ophthalmology, 143, 48-53.
https://doi.org/10.1016/j.ajo.2006.08.031
[48]  郑丹莹, 张振平, 胡蓉, 杨文辉, 杨晖, 郭未艾. 光学相干生物测量仪测量人工晶状体度数的初步研究[J]. 中国实用眼科杂志, 2002, 20(6): 444-446.
[49]  刘洪婷, 刘磊, 李新宇, 等. 准分子激光原位角膜磨镶术后角膜后表面的改变[J]. 眼视光学杂志, 2004, 6(4): 216-219.
[50]  阚单, 刘金璐, 刘汉强. 角膜瓣厚度变化的相关因素及其对LASIK手术的影响的研究现状.国际眼科杂志, 2008, 8(7): 1444-1447.
[51]  Baek, T., Lee, K., Kagaya, F., et al. (2001) Factors Affecting the Forward Shift of Posterior Corneal Surface after Laser in Situ Keratomileusis. Ophthalmology, 108, 317-320.
https://doi.org/10.1016/S0161-6420(00)00502-9
[52]  付梦军, 张浩润, 王锐, 等. 准分子激光原位角膜磨镶术后角膜后表面曲率的改变[J]. 国际眼科杂志, 2011, 11(8): 1379-1381.
[53]  崇晓霞, 赵海霞, 陈晔, 李晓玲, 秦丽茹. LASIK后角膜后表面曲率变化的研究[J]. 中国激光医学杂志, 2008, 17(1): 9-12.
[54]  杜持新, 沈晔, 黄智敏, 忻双华. 准分子激光原位角膜磨镶术后角膜后表面改变的特点及其影响因素[J]. 中华眼科杂志, 2005, 41(6): 488-491.
[55]  Lee, D.H., Seo, S., Jeong, K.W., et al. (2003) Early Spatial Changes in the Posterior Corneal surface after Laser in Situ Keratomileusis. Journal of Cataract & Refractive Surgery, 29, 778-784.
https://doi.org/10.1016/S0886-3350(02)01842-4
[56]  王铮, 杨斌, 陈家祺, 刘华. LASIK后角膜后表面曲率变化[J]. 中国实用眼科杂志, 2000, 18(4): 238-239.
[57]  杜之渝, 吴宁玲, 张大勇, 郭红, 郑晴, 晏丕松. 准分子激光原位角膜磨镶术后角膜基质床厚度安全值分析[J]. 中华眼科杂志, 2004, 40(11): 741-744.
[58]  Kheirkhah, A., Safi, H., Nazari, R., et al. (2012) Effects of Pterygium Surgery on Front and Back Corneal Surfaces and Anterior Segment Parameters. International Ophthalmology, 32, 251-257.
https://doi.org/10.1007/s10792-012-9560-2
[59]  Errais, K., Bouden, J., Miliboussen, I., et al. (2008) Effect of Pterygium Surgery on Corneal Topography. European Journal of Ophthalmology, 18, 177-181.
https://doi.org/10.1177/112067210801800203
[60]  Kim, S.W., Park, S., Im, C.Y., Seo, K.Y. and Kim, E.K. (2014) Prediction of Mean Corneal Power Change after Pterygium Excision. Cornea, 33, 148-153.
[61]  莫嘉文. 翼状胬肉手术对角膜参数及人工晶体测算影响的临床观察[D]: [硕士学位论文]. 广州: 广州医科大学, 2014.
[62]  Maheshwari, S. (2006) Pterygium-Induced Corneal Refractive Changes. Indian Journal of Ophthalmology, 55, 383-386.
https://doi.org/10.4103/0301-4738.33829
[63]  黄旺斌, 陈子林. 翼状胬肉与角膜散光关系的研究进展[J]. 医学综述, 2014, 20(4): 673-675.
[64]  Bao, F., Chen, H., Yu, Y., et al. (2013) Evaluation of the Shape Symmetry of Bilateral Normal Corneas Ina Chinese Population. PLoS ONE, 8, e73412.
https://doi.org/10.1371/journal.pone.0073412
[65]  谢培英, 迟惠, 张缨, 朱贵民, 刘俊. 长期配戴角膜塑形镜对角膜厚度和角膜内皮细胞的影响[J]. 中华眼科杂志, 2007, 43(8): 680-683.
[66]  杨媛媛, 郑蕾, 万春泓. 角膜塑形镜对患者角膜曲率、厚度及内皮细胞的影响[J]. 中国现代医生, 2013, 51(5): 159-160.
[67]  Seitz, B., Langenbucher, A. and Nguyen, N.X. (1999) Underestimation of Intraocular Lens Power for Cataract Surgery after Myopic Photorefractive Keratectomy. Ophthalmology, 10, 693-697.
https://doi.org/10.1016/S0161-6420(99)90153-7
[68]  金亚利, 谢春燕, 刘岩, 慕小斌. 外伤性白内障晶状体屈光度计算的探讨[J]. 医药前沿, 2015(13): 78-79.
[69]  余艳曙. 高度近视眼屈光因子的观察研究[D]: [硕士学位论文]. 浙江: 浙江大学, 2011.
[70]  Wang, Q., Klein, B.E., Klein, R. and Moss, S.E. (1994) Refractive Status in the Beaver Dam Eye Study. Investigative Ophthalmology & Visual Science, 35, 4344-4347.
[71]  张晓雪, 付玲玲, 何晓静, 郝瑞霖. 克拉玛依市区人群干眼症流行病学调查分析[J]. 中国实用眼科杂志, 2014, 32(7): 903-908.
[72]  李兰娇, 周宇, 许燕. 干眼症白内障患者人工晶体度数选择的参考[J]. 现代医药卫生, 2017, 33(12): 18-20.
[73]  Kennedy, R.H., Bourne, W.M. and Dyer, J.A. (1986) A 48-Year Clinical and Epidemiologic Study of Keratoconus. American Journal of Ophthalmology, 101, 267-273.
https://doi.org/10.1016/0002-9394(86)90817-2
[74]  Pflugfelder, S.C., Liu, Z., Feuer, W., et al. (2002) Corneal Thickness Indices Discriminate between Keratoconus and Contact Lens-Induced Corneal Thinning. Ophthalmology, 109, 2336-2341.
https://doi.org/10.1016/S0161-6420(02)01276-9
[75]  Rao, S.N., Raviv, T., Majmudar, P.A., et al. (2002) Role of Orbscan II in Screening Keratoconus Suspects before Refractive Corneal Surgery. Ophthalmology, 109, 1642-1646.
https://doi.org/10.1016/S0161-6420(02)01121-1
[76]  Asri, D., Touboul, D., Fournié, P., et al. (2011) Corneal Collagen Crosslinking in Progressive Keratoconus: Multicenter Results from the French National Reference Center for Keratoconus. Journal of Cataract & Refractive Surgery, 37, 2137-2143.
https://doi.org/10.1016/j.jcrs.2011.08.026
[77]  李新秀. 圆锥角膜交联术后的角膜生物力学分析[D]: [硕士学位论文]. 衡阳: 南华大学, 2017.
[78]  马艳霞, 高海英, 王丽聪, 陆爱枝, 谷树严. 不同年龄阶段的角膜曲率比较[J]. 医学美学美容旬刊, 2012, 20(10): 134-136.
[79]  唐学龄, 方臻. 582例散光轴向分布的研究[J]. 中国实用眼科杂志, 1999, 17(3): 179-181.
[80]  李斌, 陈世豪, 王勤美. 近视眼患者角膜直径和角膜曲率的研究[J]. 眼科新进展, 2006, 26(12): 938-939.
[81]  汪芳润. 近视眼研究的现状与存在问题[J]. 中华眼科杂志, 2003, 39(6): 381-384.
[82]  欧春蓓. 如何提高人工晶体生物测量数据的准确性[J]. 内蒙古中医药, 2014, 33(18): 129.
[83]  李瑜明. 人工晶状体预设度数误差干预机制的制定与实施[J]. 赣南医学院学报, 2010, 30(4): 551-552.
[84]  Huynh, S.C., Mai, T.Q., Kifley, A., Wang, J.J. and Rose, K.A. and Mitchell, P. (2006) An Evaluation of Keratometry in 6-Year-Old Children. Cornea, 25, 383-387.
https://doi.org/10.1097/01.ico.0000214203.84081.ec
[85]  Olsen, T. (2007) Improved Accuracy of Intraocular Lens Power Calculation with the Zeiss IOLMaster. Acta Ophthalmologica Scandinavica, 85, 84-87.
https://doi.org/10.1111/j.1600-0420.2006.00774.x
[86]  Maeda, N. (2001) Wave Front Technology in Ophthalmology. Current Opinion in Ophthalmology, 12, 294-299.
https://doi.org/10.1097/00055735-200108000-00009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133