|
Finance 2020
基于藤Copula的中美股市风险溢出研究
|
Abstract:
文章首先通过GARCH(1,1)-t模型对各主要股市指数收益率数据的边缘分布进行拟合,并提取降噪处理后的残差序列;接着采用极值理论中的GPD分布残差序列的尾部进行拟合;然后基于高维的C-Vine Copula模型确定各个收益率间的相依关系及联合分布;然后结合C-Vine Copula模型与条件风险(CoVaR)计算中美几个重要股市间的风险溢出效应。结果表明:美国股票市场尤其是纳斯达克市场对中国股市有强溢出效应,且主要是通过香港市场对内地市场进行风险传染。
In this paper, we firstly used the GARCH(1,1)-t model to fit the marginal distribution of the yield data of each major stock market index, and extract the residual sequence after noise reduction; then use the GPD distribution in extreme theory to fit the tail of the residual sequence, then based on the high-dimensional C-Vine Copula model to determine the dependency relationship and joint distribution of each rate of return; and combine with the C-Vine Copula model and conditional risk (CoVaR) to calculate the risk spillover effect between several important stock markets in China and the United States. The results show that the US stock market, especially the Nasdaq market, has a strong spillover effect on the Chinese stock market, and it is mainly through the Hong Kong mar-ket’s risk contagion of the mainland market.
[1] | 李晓广, 张岩贵. 我国股票市场与国际市场的联动性研究——对次贷危机时期样本的分析[J]. 国际金融研究, 2008(11): 75-80. |
[2] | 李红权, 洪永淼, 汪寿阳. 我国A股市场与美股、港股的互动关系研究: 基于信息溢出视角[J]. 经济研究, 2011(8): 15-25. |
[3] | 苏木亚, 郭崇慧. 全球主要股票市场对我国股市的多渠道协同波动溢出效应——欧债危机背景下基于中证行业指数视角的研究[J]. 管理评论, 2015(11): 21-32. |
[4] | 张福, 赵华, 赵媛媛. 中美股市协整关系的实证分析[J]. 统计与决策, 2004(2): 93-94. |
[5] | 张兵, 范致镇, 李心丹. 中美股票市场的联动性研究[J]. 经济研究, 2010(11): 141-151. |
[6] | 李岸, 陈美林, 乔海曙. 中国对发达国家与金砖国家股市波动溢出效应研究[J]. 东岳论丛, 2016(5): 76-85. |
[7] | 刘晓星, 段斌, 谢福座. 股票市场风险溢出效应研究: 基于EVT-Copula-CoVaR模型的分析[J]. 世界经济, 2011(11): 145-159. |