全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阶为8p2的7度对称图
On Symmetric Graphs of Order Eight Times a Prime Square and Valency Seven

DOI: 10.12677/PM.2020.109093, PP. 811-820

Keywords: 对称图,自同构群,单群
Symmetric Graph
, Automorphism Group, Simple Group

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,研究了8p2阶的7度对称图,其中p为一个奇素数。证明了自同构群在图的顶点集上拟本原时,存在两个图。当自同构群在图的顶点集上二部拟本原时,不存在图。
In this paper, we study symmetric graphs of valency seven and order 8p2, where p is an odd prime. It is proved that there are two graphs if the automorphism group of those graphs which is quasiprimitive on its vertices set, while it is no graphs exists in the case of the automorphism group is biquasiprimitive on the vertex set.

References

[1]  Chao, C.Y. (1971) On the Classification of Symmetric Graphs with a Prime Number of Vertices. Transactions of the American Mathematical Society, 158, 247-256.
https://doi.org/10.1090/S0002-9947-1971-0279000-7
[2]  Cheng, Y. and Oxley, J. (1987) On Weakly Symmetric Graphs of Order Twice a Prime. Journal of Combinatorial Theory, Series B, 42, 196-211.
https://doi.org/10.1016/0095-8956(87)90040-2
[3]  Wang, R.J. and Xu, M.Y. (1993) A Classification of Symmetric Graphs of Order 3p. Journal of Combinatorial Theory, Series B, 58, 197-216.
https://doi.org/10.1006/jctb.1993.1037
[4]  Praeger, C.E., Wang, R.J. and Xu, M.Y. (1993) Symmetric Graphs of Order a Product of Two Distinct Primes. Journal of Combinatorial Theory, Series B, 58, 299-318.
https://doi.org/10.1006/jctb.1993.1046
[5]  Praeger, C.E. and Xu, M.Y. (1993) Vertex-Primitive Graphs of Order a Product of Two Distinct Primes. Journal of Combinatorial Theory, Series B, 59, 245-266.
https://doi.org/10.1006/jctb.1993.1068
[6]  Feng, Y.Q. and Kwak, J.H. (2007) Cubic Symmetric Graphs of Order a Small Number Times a Prime Square. Journal of Combinatorial Theory, Series B, 97, 627-646.
https://doi.org/10.1016/j.jctb.2006.11.001
[7]  Feng, Y.Q. and Kwak, J.H. (2006) Cubic Symmetric Graphs of Order Twice an Odd Prime Power. Journal of the Australian Mathematical Society, 81, 153-164.
https://doi.org/10.1017/S1446788700015792
[8]  Feng, Y.Q., Zhou, J.X. and Li, Y.T. (2016) Pentavalent Symmetric Graphs of Order Twice a Prime Power. Discrete Mathematics, 339, 2640-2651.
https://doi.org/10.1016/j.disc.2016.05.008
[9]  Pan, J.M., Liu, Z. and Xu, X.F. (2015) Pentavalent Symmetric Graphs of Order Twice Power. Algebra Colloquium, 22, 383-394.
https://doi.org/10.1142/S1005386715000334
[10]  Zhou, J.X. and Feng, Y.Q. (2010) Tetravalent s-Transitive Graphs of Order Twice a Prime Power. Journal of the Australian Mathematical Society, 88, 277-288.
https://doi.org/10.1017/S1446788710000066
[11]  Guo, S.T., Shi, J.T. and Zhang, Z.J. (2011) Heptavalent Symmetric Graphs of Order 4p. The South Asian Journal of Mathematics, 3, 131-136.
[12]  Guo, S.T., Hou, H.L. and Xu, Y. (2017) Heptavalent Symmetric Graphs of Order 16p. Algebra Colloquium, 24, 453-466.
https://doi.org/10.1142/S1005386717000293
[13]  Pan, J.M., Ling, B. and Ding, S.Y. (2017) On Symmetric Graphs of Order Four Times an Odd Square-Free Integer and Valency Seven. Discrete Mathematics, 340, 2071-2078.
https://doi.org/10.1016/j.disc.2017.04.008
[14]  Hua, X.H., Li, C. and Xin, X. (2018) Valency Seven Symmetric Graphs of Order 2pq. Czechslovak Mathematical Journal, 68, 581-599.
https://doi.org/10.21136/CMJ.2018.0530-15
[15]  Pan, J.M. and Yin, F.G. (2018) Symmetric Graphs of Order Four Times a Prime Power and Valency Seven. Journal of Algebra and Its Applications, 17, Article ID: 1850093.
https://doi.org/10.1142/S0219498818500937
[16]  Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A. (1985) Atlas of Finite Groups. Oxford Univ. Press, London/New York.
[17]  Bosma, W., Cannon, C. and Playoust, C. (1997) The Magma Algebra System Ι: The User Language. Journal of Symbolic Computation, 24, 235-265.
https://doi.org/10.1006/jsco.1996.0125
[18]  Huppert, B. and Lempken, W. (2000) Simple Groups of Order Divisible by at Most Four Primes. Francisk Skorina Gomel State University, 16, 64-75.
[19]  Jafarzadeh, A. and Iranmanesh, A. (2007) On Simple Kn-Groups for n=5, 6. In: Campbell, C.M., Quick, M.R., Robertson, E.F. and Smith, G.C., Eds., Groups St. Andrews 2005, London Mathematical Lecture Note Series, Cambridge University Press, Cambridge, 668-680.
[20]  Guo, S.T., Li, Y. and Hua, X.H. (2016) (G,s)-Transitive Graphs of Valency 7. Algebra Colloquium, 23, 493-500.
https://doi.org/10.1142/S100538671600047X
[21]  Li, C.H., Lu, Z.P. and Wang, G.X. (2016) Arc-Transitive Graphs of Square-Free Order and Small Valency. Discrete Mathematics, 339, 2907-2918.
https://doi.org/10.1016/j.disc.2016.06.002
[22]  Li, C.H. and Pan, J.M. (2008) Finite 2-Arc-Transitive Abelian Cayley Graphs. European Journal of Combinatorics, 29, 148-158.
https://doi.org/10.1016/j.ejc.2006.12.001
[23]  Praeger, C.E. (1992) An O’Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc-Transitive Graphs. Journal of the London Mathematical Society, 47, 227-239.
https://doi.org/10.1112/jlms/s2-47.2.227
[24]  Dixon, J.D. and Mortimer, B. (1997) Permutation Groups. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-0731-3
[25]  Giudici, M., Li, C.H. and Praeger, C.E. (2003) Analysing Finite Locally S-Arc-Transitive Graphs. Trans. Amer. Math. Soc., 356, 291-317.
https://doi.org/10.1090/S0002-9947-03-03361-0
[26]  Lu, Z.P., Wang, C.Q. and Xu, M.Y. (2004) On Semisymmetric Cubic Graphs of Order 6p2. Science in China Series A Mathematics, 47, 1-17.
[27]  Li, C.H., Praeger, C.E., Venkatesh, A. and Zhou, S.M. (2002) Finite Locally-Quasiprimitive Graphs. Discrete Mathematics, 246, 197-218.
https://doi.org/10.1016/S0012-365X(01)00258-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133