全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小麦条锈菌毒性基因研究进展
Research Progress on Virulence Genes of Wheat Stripe Rust

DOI: 10.12677/BR.2020.95057, PP. 448-460

Keywords: 小麦条锈菌,毒性基因,致病性,变异
Puccinia striiformis f.sp. Tritici (Pst)
, Toxic Genes, Pathogenicity, Variations

Full-Text   Cite this paper   Add to My Lib

Abstract:

小麦条锈病是由条形柄锈菌(Puccinia striiformis f.sp. tritici)引起的小麦上的重要病害,流行年份常常会造成小麦产量的减产,严重的时候会造成绝收,严重威胁我国的粮食生产。由于小麦条锈菌属于严格专性寄生菌,在分子水平上对小麦条锈菌基因进行的研究相对较少。本文总结了现已研究发现的条绣菌的毒性基因,为以后对小麦条绣菌的研究与防治打下理论基础。
Wheat stripe rust is a major disease on wheat caused by Puccinia striiformis f.sp. tritici. Popular years often result in a reduction in wheat output, and in severe cases, it will cause no harvest, which will seriously threaten my country’s grain production. Since the wheat stripe rust belongs to strictly obligate parasites, there are relatively few studies on the wheat stripe rust gene at the molecular level. This article summarizes the virulence genes of F. oxysporum that we have now studied, laying a theoretical foundation for the future research and prevention and cure of T. infestans.

References

[1]  Braun, H.J., Atlin, G., Payne, T. and Reynolds, M.P. (2010) Multi-Location Testing as a Tool to Identify Plant Response to Global Climate Change. European Journal of Neuroscience, 23, 1129-1141.
[2]  Chen, C. and Dickman, M.B. (2005) Proline Suppresses Apoptosis in the Fungal Pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the United States of America, 102, 3459-3464.
https://doi.org/10.1073/pnas.0407960102
[3]  李振岐, 曾世迈. 中国小麦条锈病[M]. 北京: 中国农业出版社, 2002.
[4]  Chen, W.Q., Wellings, C., Chen, X.M., Kang, Z.S. and Liu, T.G. (2014) Wheat Stripe (Yellow) Rust Caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 15, 433-446.
https://doi.org/10.1111/mpp.12116
[5]  Wellings, C.R. (2011) Global Status of Stripe Rust: A Review of Historical and Current Threats. Euphytica, 179, 129-141.
https://doi.org/10.1007/s10681-011-0360-y
[6]  Zhao, J., Wang, M.N., Chen, X.M. and Kang, Z.S. (2016) Role of Alternate Hosts in Epidemiology and Pathogen Variation of Cereal Rusts. Annual Review of Phytopathology, 54, 207-228.
https://doi.org/10.1146/annurev-phyto-080615-095851
[7]  Wan, A.M., Chen, X.M. and He, Z.H. (2007) Wheat Stripe Rust in China. Australian Journal of Agricultural Research, 58, 605-619.
https://doi.org/10.1071/AR06142
[8]  Xia, X.C., Li, Z.F., Li, G.Q., He, Z.H. and Singh, R.P. (2007) Stripe Rust Resistance in Chinese Bread Wheat Cultivars and Lines. In: Buck, H.T., Nisi, J.E. and Salomón, N., Eds., Wheat Production in Stressed Environments, Developments in Plant Breeding, Springer, Dordrecht, 77-82.
https://doi.org/10.1007/1-4020-5497-1_9
[9]  Wan, A.M., Zhao, Z.H., Chen, X.M., He, Z.H., Jin, S.L., Jia, Q.Z., Yao, G., Yang, J.X., Wang, B.T. and Li, G.B. (2007) Wheat Stripe Rust Epidemic and Virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 88, 896-904.
https://doi.org/10.1094/PDIS.2004.88.8.896
[10]  万安民. 小麦条锈病的发生状况和研究现状[J]. 世界农业, 2000(5): 39-40.
[11]  Jin, Y., Szabo, L.J. and Carson, M. (2010) Century-Old Mystery of Puccinia striiformis Life History Solved with the Identification of Berberis as an Alternate Host. Phytopathology, 100, 432-435.
https://doi.org/10.1094/PHYTO-100-5-0432
[12]  赵杰, 张宏昌, 姚娟妮, 黄丽丽, 康振生. 中国小麦条锈菌转主寄主小檗的鉴定[J]. 菌物学报, 2011, 30(6): 895-900.
[13]  李振岐, 商鸿生. 小麦锈病及其防治[M]. 上海: 上海科学技术出版社, 1989: 1-229.
[14]  姚娟妮, 张宏昌, 赵杰, 韩青梅, 成玉林, 黄丽丽, 康振生. 小麦条锈菌冬孢子发生的组织学和超微结构研究[J]. 菌物学报, 2012, 31(4): 560-566.
[15]  Zheng, W.M., Huang, L.L., Huang, J.Q., Wang, X.J., Chen, X.M., Zhao, J., Guo, J., Zhuang, H., Qiu, C.Z., Liu, J., et al. (2013) High Genome Heterozygosity and Endemic Genetic Recombination in the Wheat Stripe Rust Fungus. Nature Communications, 4, Article No. 2673.
https://doi.org/10.1038/ncomms3673
[16]  Saunders, D.G.O., Win, J., Cano, L.M., Szabo, L.J., Kamoun, S. and Raffaele, S. (2012) Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE, 7, e29847.
[17]  Guo, J., Dai, X., Xu, J.R., Wang, Y., Bai, P., Liu, F., Duan, Y., Zhang, H., Huang, L. and Kang, Z. (2011) Molecular Characterization of a Fus3/Kss1 Type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS ONE, 6, e21895.
[18]  张河山, 胡亚亚, 张娜, 杨文香, 刘大群. 寄主诱导的基因沉默(HIGS)技术研究进展[J]. 农业生物技术学报, 2013, 21(5): 604-611.
[19]  Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J. and Schweizer, P. (2010) HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis. Plant Cell, 22, 3130-3141.
https://doi.org/10.1105/tpc.110.077040
[20]  Panwar, V., McCallum, B. and Bakkeren, G. (2013) Host-Induced Gene Silencing of Wheat Leaf Rust Fungus Puccinia triticina Pathogenicity Genes Mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 81, 595-608.
https://doi.org/10.1007/s11103-013-0022-7
[21]  Yin, C.T., Jurgenson, J.E. and Hulbert, S.H. (2011) Development of a Host-Induced RNAi System in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp tritici. Molecular Plant-Microbe Interactions, 24, 554-561.
https://doi.org/10.1094/MPMI-10-10-0229
[22]  Zhang, H., Guo, J., Voegele, R.T., Zhang, J.S., Duan, Y.H., Luo, H.Y. and Kang, Z.S. (2012) Functional Characterization of Calcineurin Homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp tritici Using a Host-Induced RNAi System. PLoS ONE, 7, e49262.
https://doi.org/10.1371/journal.pone.0049262
[23]  Cheng, W., Song, X.S., Li, H.P., Cao, L.H., Sun, K., Qiu, X.L., Xu, Y.B., Yang, P., Huang, T. and Zhang, J.B. (2015) Host-Induced Gene Silencing of an Essential Chitin Synthase Gene Confers Durable Resistance to Fusarium Head Blight and Seedling Blight in Wheat. Plant Biotechnology Journal, 13, 1335-1345.
https://doi.org/10.1111/pbi.12352
[24]  Liu, J., Guan, T., Zheng, P.J., Chen, L.Y., Yang, Y., Huai, B.Y., Li, D., Chang, Q., Huang, L.L. and Kang, Z.S. (2016) An Extracellular Zn-Only Superoxide Dismutase from Puccinia striiformis Confers Enhanced Resistance to Host-Derived Oxidative Stress. Environmental Microbiology, 18, 4118-4135.
https://doi.org/10.1111/1462-2920.13451
[25]  Catanzariti, A.M., Dodds, P.N., Lawrence, G.J., Ayliffe, M.A. and Ellis, J.G. (2006) Haustorially Expressed Secreted Proteins from Flax Rust Are Highly Enriched for Avirulence Elicitors. Plant Cell, 18, 243-256.
https://doi.org/10.1105/tpc.105.035980
[26]  Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Ayliffe, M.A. and Ellis, J.G. (2004) The Melampsora Lini AvrL567 Avirulence Genes Are Expressed in Haustoria and Their Products Are Recognized Inside Plant Cells. Plant Cell, 16, 755-768.
https://doi.org/10.1105/tpc.020040
[27]  Duplessis, S., Joly, D.L. and Dodds, P.N. (2011) Rust Effectors. In: Martin, F. and Kamoun, S., Eds., Effectors in Plant-Microbe Interactions, John Wiley & Sons, Inc., Hoboken, 155-193.
https://doi.org/10.1002/9781119949138.ch7
[28]  Kemen, E., Kemen, A., Ehlers, A., Voegele, R. and Mendgen, K. (2013) A Novel Structural Effector from Rust Fungi Is Capable of Fibril Formation. The Plant Journal, 75, 767-780.
https://doi.org/10.1111/tpj.12237
[29]  成玉林. 小麦条锈菌致病相关基因鉴定及其功能研究[D]: [博士学位论文]. 陕西: 西北农林科技大学, 2015.
[30]  Giraldo, M.C. and Valent, B. (2013) Filamentous Plant Pathogen Effectors in Action. Nature Reviews Microbiology, 11, 800-814.
https://doi.org/10.1038/nrmicro3119
[31]  Bluhm, B.H., Zhao, X., Flaherty, J.E., Xu, J.R. and Dunkle, L.D. (2007) RAS2 Regulates Growth and Pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 20, 627-636.
https://doi.org/10.1094/MPMI-20-6-0627
[32]  Fortwendel, J.R., Panepinto, J.C., Seitz, A.E., Askew, D.S. and Rhodes, J.C. (2004) Aspergillus Fumigatus RasA and RasB Regulate the Timing and Morphology of Asexual Development. Fungal Genetics and Biology, 41, 129-139.
https://doi.org/10.1016/j.fgb.2003.10.004
[33]  Xie, X.Q., Guan, Y., Ying, S.H. and Feng, M.G. (2013) Differentiated Functions of Ras1 and Ras2 Proteins in Regulating the Germination, Growth, Conidiation, Multi-Stress Tolerance and Virulence of Beauveria bassiana. Environmental Microbiology, 15, 447-462.
https://doi.org/10.1111/j.1462-2920.2012.02871.x
[34]  Boyce, K.J., Hynes, M.J. and Andrianopoulos, A. (2005) The Ras and Rho GTPases Genetically Interact to Co-Ordinately Regulate Cell Polarity during Development in Penicillium marneffei. Molecular Microbiology, 55, 1487-1501.
https://doi.org/10.1111/j.1365-2958.2005.04485.x
[35]  Fortwendel, J.R., Zhao, W., Bhabhra, R., Park, S., Perlin, D.S., Askew, D.S. and Rhodes, J.C. (2005) A Fungus-Specific Ras Homolog Contributes to the Hyphal Growth and Virulence of Aspergillus fumigatus. Eukaryotic Cell, 4, 1982-1989.
https://doi.org/10.1128/EC.4.12.1982-1989.2005
[36]  Muller, P., Katzenberger, J.D., Loubradou, G. and Kahmann, R. (2003) Guanyl Nucleotide Exchange Factor Sql2 and Ras2 Regulate Filamentous Growth in Ustilago maydis. Eukaryotic Cell, 2, 609-617.
https://doi.org/10.1128/EC.2.3.609-617.2003
[37]  Zhang, S.R., Hao, Z.M., Wang, L.H., Shen, S., Cao, Z.Y., Xin, Y.Y., Hou, M.L., Gu, S.Q., Han, J.M. and Dong, J.G. (2012) StRas2 Regulates Morphogenesis, Conidiation and Appressorium Development in Setosphaeria turcica. Microbiological Research, 167, 478-486.
https://doi.org/10.1016/j.micres.2012.02.009
[38]  Sharon, A., Finkelstein, A., Shlezinger, N. and Hatam, I. (2009) Fungal Apoptosis: Function, Genes and Gene Function. FEMS Microbiology Reviews, 33, 833-854.
https://doi.org/10.1111/j.1574-6976.2009.00180.x
[39]  Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J. and Cardenas, M.E. (2007) Sensing the Environment: Lessons from Fungi. Nature Reviews Microbiology, 5, 57-69.
https://doi.org/10.1038/nrmicro1578
[40]  Grützmann, K., Szafranski, K., Pohl, M., Voigt, K., Petzold, A. and Schuster, S. (2013) Fungal Alternative Splicing Is Associated with Multicellular Complexity and Virulence: A Genome-Wide Multi-Species Study. DNA Research, 21, 27-39.
https://doi.org/10.1093/dnares/dst038
[41]  Koizumi, J., Okamoto, Y., Onogi, H., Mayeda, A., Krainer, A.R. and Hagiwara, M. (1999) The Subcellular Localization of SF2/ASF Is Regulated by Direct Interaction with SR Protein Kinases (SRPKs). Journal of Biological Chemistry, 274, 11125-11131.
https://doi.org/10.1074/jbc.274.16.11125
[42]  Tang, Z., Tsurumi, A., Alaei, S., Wilson, C., Chiu, C., Oya, J. and Ngo, B. (2007) Dsk1p Kinase Phosphorylates SR Proteins and Regulates Their Cellular Localization in Fission Yeast. Biochemical Journal, 405, 21-30.
https://doi.org/10.1042/BJ20061523
[43]  Hovm?ller, M.S., S?rensen, C.K., Walter, S. and Justesen, A.F. (2011) Diversity of Puccinia striiformis on Cereals and Grasses. Annual Review of Phytopathology, 49, 197-217.
https://doi.org/10.1146/annurev-phyto-072910-095230
[44]  何付新, 等. 小麦条锈菌III型磷脂酰肌醇4-羟基激酶基因(PsPik1)的功能分析[J]. 中国农业科学, 2015, 48(16): 3156-3165.
[45]  张洪, 丁可, 裴国亮, 郭军, 康振生. 小麦条锈菌胞质游离钙离子动态检测方法的建立[J]. 菌物学报, 2010, 29(1): 64-67.
[46]  郭军, 张洪, 丁可, 代西维, 陈玥颖, 段迎辉, 黄丽丽, 康振生. 小麦条锈菌 PsNCS1基因的克隆及转录表达特征[J]. 微生物学报, 2010, 50(7): 962-968.
[47]  Lim, S., Strahl, T., Thorner, J. and Ames, J.B. (2011) Structure of a Ca2+-Myristoyl Switch Protein That Controls Activation of a Phosphatidylinositol 4-Kinase in Fission Yeast. The Journal of Biological Chemistry, 286, 12565-12577.
https://doi.org/10.1074/jbc.M110.208868
[48]  Strahl, T., Hama, H., Dewald, D.B. and Thorner, J. (2005) Yeast Phosphatidylinositol 4-Kinase, PIK1, Has Essential Roles at the Golgi and in the Nucleus. The Journal of Cell Biology, 171, 967-979.
https://doi.org/10.1083/jcb.200504104
[49]  Garcia-Bustos, J.F., Marini, F., Stevenson, I., Frei, C. and Hall, M.N. (1994) PIK1, an Essential Phosphatidylinositol 4-Kinase Associated with the Yeast Nucleus. The EMBO Journal, 13, 2352-2361.
https://doi.org/10.1002/j.1460-2075.1994.tb06519.x
[50]  代西维, 郭军, 陈玥颖, 段迎辉, 夏宁, 魏国荣, 黄丽丽, 康振生. 小麦条锈菌PsCdc2基因的克隆及在条锈菌侵染小麦后的转录表达分析[J]. 微生物学报, 2010, 50(2): 174-181.
[51]  Holton, S., Merckx, A., Burgess, D., et al. (2003) Structures of P. falciparum PFPK5 Test the CDK Regulation Paradigm and Suggest Mechanisms of Small Molecule Inhibition. Structure, 11, 1329-1337.
https://doi.org/10.1016/j.str.2003.09.020
[52]  Pines, J. and Hunter, T. (1991) Cyclin-Dependent Kinases a New Cell Cycle Motif? Trends in Cell Biology, 1, 117-121.
https://doi.org/10.1016/0962-8924(91)90116-Q
[53]  夏晓峰, 黄云鹏, 江贤章. 裂殖壶菌EST文库cdc2基因的筛选与分析[J]. 微生物学杂志, 2008, 28(3): 7-14.
[54]  Arcia-Muse, T., Steinberg, G. and Perez-Martin, J. (2003) Characterization of B-Type Cyclins in the Smut Fungus Ustilago maydis: Roles in Morphogenesis and Pathogenicity. Journal of Cell Science, 117, 487-506.
https://doi.org/10.1242/jcs.00877
[55]  Dickman, M.B. and Yarden, O. (1999) Serine/Threonine Protein Kinases and Phosphatases in Filamentious Fungi. Fungal Genetics and Biology, 16, 99-117.
https://doi.org/10.1006/fgbi.1999.1118
[56]  Hilfiker, S. (2003) Neuronal Calcium Sensor-1: A Multifunctional Regulator of Secretion. Biochemical Society Transactions, 31, 828-832.
https://doi.org/10.1042/bst0310828
[57]  秦娟, 黄传明, 何付新, 朱晓果, 张阳, 康振生. 小麦条锈菌钙调素依赖蛋白激酶基因Pscamk 的功能[J]. 微生物学报, 2014, 54(11): 1296-1303.
[58]  Rose, A.J., Kiens, B. and Richter, E.A. (2006) Ca2+-Calmodulin-Dependent Protein Kinase Expression and Signalling in Skeletal Muscle during Exercise. The Journal of Physiology, 574, 889-903.
https://doi.org/10.1113/jphysiol.2006.111757
[59]  Ohya, Y., Kawasaki, H., Suzuki, K., Londesborough, J. and Anraku, Y. (1991) Two Yeast Genes Encoding Calmodulin-Dependent Protein Kinases. Isolation, Sequencing and Bacterial Expressions of CMK1 and CMK2. Journal of Biological Chemistry, 266, 12784-12794.
[60]  Melcher, M.L. and Thorner, J. (1996) Identification and Characterization of the CLK1 Gene Product, a Novel CaM Kinase-Like Protein Kinase from the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 271, 29958-29968.
https://doi.org/10.1074/jbc.271.47.29958
[61]  Pausch, M.H., Kaim, D., Kunisawa, R., Admon, A. and Thorner, J. (1991) Multiple Ca2+/Calmodulin-Dependent Protein Kinase Genes in a Unicellular Eukaryote. The European Molecular Biology Organization Journal, 10, 1511-1522.
https://doi.org/10.1002/j.1460-2075.1991.tb07671.x
[62]  Hanyu, Y., Imai, K.K., Kawasaki, Y., Nakamura, T., Nakaseko, Y., Nagao, K., Kokubu, A., Ebe, M., Fujisawa, A. and Hayashi, T. (2009) Schizosaccharomyces pombe Cell Division Cycle under Limited Glucose Requires Ssp1 Kinase, the Putative CaMKK, and Sds23, a PP2A-Related Phosphatase Inhibitor. Genes to Cells, 14, 539-554.
[63]  Dayton, J.S., Sumi, M., Nanthakumar, N.N. and Means, A.R. (1997) Expression of a Constitutively Active Ca2+/Calmodulin-Dependent Kinase in Aspergillus nidulans Spores Prevents Germination and Entry into the Cell Cycle. Journal of Biological Chemistry, 272, 3223-3230.
https://doi.org/10.1074/jbc.272.6.3223
[64]  Joseph, J.D. and Means, A.R. (2000) Identification and Characterization of Two Ca2+/Ca M-Dependent Protein Kinases Required for Normal Nuclear Division in Aspergillus nidulans. Journal of Biological Chemistry, 275, 38230-38238.
https://doi.org/10.1074/jbc.M006422200
[65]  Li, L., Satoh, H., Ginsburg, K.S. and Bers, D.M. (1997) The Effect of Ca(2+)-Calmodulin-Dependent Protein Kinase II on Cardiac Excitation-Contraction Coupling in Ferret Ventricular Myocytes. The Journal of Physiology, 501, 17-31.
[66]  Tombes, R.M., Grant, S., Westin, E.H. and Krystal, G.G. (1995) Cell Cycle Arrest and Apoptosis Are Induced in NIH 3T3 Cells by KN-93, an Inhibitor of CaMK-II (The Multifunctional Ca2+/CaM Kinase). Cell Growth & Differentiation, 6, 1063-1070.
[67]  Markovic, O. and Janecek, S. (2001) Pectin Degrading Glycoside Hydrolases of Family 28: Sequence-Structural Features, Specificities and Evolution. Protein Engineering, 14, 615-631.
https://doi.org/10.1093/protein/14.9.615
[68]  Schena, M., Shalon, D., Davis, R.W., et al. (1995) Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science, 270, 467-470.
https://doi.org/10.1126/science.270.5235.467
[69]  Reignault, P., Kunz, C., Delage, N., et al. (2000) Host- and Symptom-Specific Pectinase Isozymes Produced by Botrytis cinerea. Mycological Research, 104, 421-428.
[70]  Zhang, J., Bruton, B., Miller, M., et al. (1999) Relationship of Developmental Stage of Cantaloupe Fruit to Black Rot Susceptibility and Enzyme Production by Didymella bryoniae. Plant Disease, 83, 1025-1032.
https://doi.org/10.1094/PDIS.1999.83.11.1025
[71]  Wattad, C., Freeman, S., Dinoor, A., et al. (1995) A Nonpathogenic Mutant of Colletotrichum magna Is Deficient in Extracellular Secretion of Pectate Lyase. Molecular Plant-Microbe Interactions, 8, 621-626.
https://doi.org/10.1094/MPMI-8-0621
[72]  Ke, X., Huang, L., Han, Q., et al. (2013) Histological and Cytological Investigations of the Infection and Colonization of Apple Bark by Valsa mali var. mali. Australasian Plant Pathology, 42, 85-93.
https://doi.org/10.1007/s13313-012-0158-y
[73]  李曼, 郑佩晶, 怀宝玉, 李丹, 康振生, 刘杰. 小麦条锈菌果胶酶基因PsPL1的克隆与功能分析[J]. 西北农林科技大学学报(自然科学版), 2016, 44(11): 155-160.
[74]  宋平, 谭成龙, 郭嘉, 戚拓, 刘芃, 郭军. 小麦条锈菌效应蛋白基因PSTG-23616的时空表达特征分析[J]. 西北农业学报, 2016, 25(9): 1279-1288.
[75]  Whisson, S.C., Boevink. P.C., Lucy. M., et al. (2007) A Trans-Location Signal for Delivery of Oomycete Effector Proteins into Host Plant Cells. Nature, 450, 115-118.
https://doi.org/10.1038/nature06203
[76]  Bhairi, S.M., Staples, R.C., Freve, P., et al. (1989) Characterization of an Infection Structure-Specific Gene from the Rust Fungus Uromyces appendiculatus. Gene, 81, 237-243.
https://doi.org/10.1016/0378-1119(89)90184-4
[77]  Barja, F., Jr., A.C., Staples, R.C., et al. (1998) Microinjected Antisense Inf24 Oligonucleotides Inhibit Appressorium Development in Uromyces. Mycological Research, 102, 1513-1518.
https://doi.org/10.1017/S0953756298006601
[78]  Ann-Maree, C., Dodds, P.N., Lawrence, G.J., et al. (2006) Haustorially Expressed Secreted Proteins from Flax Rust Are Highly Enriched for Avirulence Elicitors. Plant Cell, 18, 243-256.
https://doi.org/10.1105/tpc.105.035980
[79]  陈玥颖, 郭军, 代西维, 段迎辉, 魏国荣, 黄丽丽, 康振生. 麦条锈菌一个产孢相关基因 PsCon1的克隆及表达特征分析[J]. 中国农业科学, 2010, 43(6): 1156-1163.
[80]  White, B.T. and Yanofsky, C. (1993) Structural Characterization and Expression Analysis of the Neurospora Conidiation Gene Con-6. Developmental Biology, 160, 254-264.
https://doi.org/10.1006/dbio.1993.1303
[81]  Wang, C.F., Huang, L.L., Buchenauer, H., Han, Q.M., Zhang, H.C. and Kang, Z.S. (2007) Histochemical Studies on the Accumulation of Reactive Oxygen Species ( and H2O2) in the Incompatible and Compatible Interaction of Wheat—Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 71, 230-239.
https://doi.org/10.1016/j.pmpp.2008.02.006
[82]  康振生, 李振岐, J. 庄约兰, R. 罗格林. 小麦条锈菌吸器超微结构和细胞化学的研究[J]. 真菌学报, 1994, 13(1): 52-57.
[83]  康振生, 王瑶, 黄丽丽, 魏国荣, 赵杰. 小麦品种对条锈病低反应型抗性的组织学和超微结构研究[J]. 中国农业科学, 2003, 36(9): 1026-1031.
[84]  朱晓果, 黄传明, 秦娟, 何付新, 张阳, 郭军, 康振生. 小麦条锈病菌MAPK激酶级联途径介导的致病机理研究[C]//中国植物病理学会. 沈阳图书馆学会年会论文集: 2014年卷. 沈阳: 沈阳图书馆出版社, 2014: 267-268.
[85]  Mayorga, M.E. and Gold, S.E. (1999) A MAP Kinase Encoded by the Ubc3 Gene of Ustilago maydis Is Required Forfilamentous Growth and Full Virulence. Molecular Microbiology, 34, 485-497.
https://doi.org/10.1046/j.1365-2958.1999.01610.x
[86]  Müller, P., Weinzierl, G., Brachmann, A., Feldbrügge, M. and Kahmann, R. (2003) Mating and Pathogenic Development of the Smut Fungus Ustilago maydis Are Regulated by One Mitogen-Activated Protein Kinase Cascade. Eukaryotic Cell, 2, 1187-1199.
https://doi.org/10.1128/EC.2.6.1187-1199.2003
[87]  Brachmann, A., Schirawski, J., Müller, P., and Kahmann, R. (2003) An Unusual MAP Kinase Is Required for Efficient Penetration of the Plant Surface by Ustilago maydis. The EMBO Journal, 22, 2199-2210.
https://doi.org/10.1093/emboj/cdg198
[88]  Doehlemann, B.T., Mendoza-Mendoza, A., et al. (2009) Ustilago Maydis as a Pathogen. Annual Review of Phytopathology, 47, 423-445.
https://doi.org/10.1146/annurev-phyto-080508-081923
[89]  Zhao, X., Mehrabi, R. and Xu, J.R. (2007) Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis. Eukaryotic Cell, 6, 1701-1714.
https://doi.org/10.1128/EC.00216-07
[90]  Rispail, N., et al. (2009) Comparative Genomics of MAP Kinase and Calcium-Calcineurin Signalling Components in Plant and Human Pathogenic Fungi. Fungal Genetics and Biology, 46, 287-298.
[91]  郭军, 代西维, 许金荣, 等. 小麦条锈菌MAPK基因PsAMPK1的功能分析[C]//中国植物病理学会2011年学术年会. 2011年卷. 宜昌: 宜昌图书馆出版社, 2011: 181-189.
[92]  Klosterman, S.J., Martinez-Espinoza, A.D., Andrews, D.L., Seay, J.R. and Gold, S.E. (2008) Ubc2, an Ortholog of the Yeast Ste50p Adaptor, Possesses a Basidiomycete-Specific Carboxy Terminal Extension Essential for Pathogenicity Independent of Pheromone Response. Molecular Plant-Microbe Interactions, 21, 110-121.
https://doi.org/10.1094/MPMI-21-1-0110
[93]  Zhao, X., Kim, Y., Park, G. and Xu, J.-R. (2005) A Mitogen-Activated Protein Kinase Cascade Regulating Infection-Related Morphogenesis in Magnaporthe grisea. The Plant Cell, 17, 1317-1329.
https://doi.org/10.1105/tpc.104.029116
[94]  潘教文, 李德全. 植物 MAPK信号转导组分的细胞定位与选择性剪接[J]. 中国生物化学与分子生物学报, 2010, 26(5): 393-400.
[95]  Wen, F., White, G.J., Vanetten, H.D., et al. (2009) Extracellular DNA Is Required for Root Tip Resistance to Fungal Infection. Plant Physiology, 151, 820-829.
https://doi.org/10.1104/pp.109.142067
[96]  Hawes, M.C., Curlango-Rivera, G., Wen, F., et al. (2011) Extracellular DNA: The Tip of Root Defenses? Plant Science, 180, 741-745.
https://doi.org/10.1016/j.plantsci.2011.02.007
[97]  Brinkmann, V., Reichard, U., Goosmann, C., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535.
https://doi.org/10.1126/science.1092385
[98]  Goldmann, O. and Medina, E. (2013) The Expanding World of Extracellular Traps: Not Only Neutrophils but Much More. Frontiers in Immunology, 3, 420.
https://doi.org/10.3389/fimmu.2012.00420

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133