全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湿地植物大薸对氮胁迫的生理响应研究
The Physiological Responses of Pistia stratiotes to Nitrate-Nitrogen Stress

DOI: 10.12677/BR.2020.95056, PP. 439-447

Keywords: 大薸,去除效率,抗氧化酶,可溶性糖,生长
Pistia stratiotes
, Removal Efficiency, Antioxidative Enzymes, Soluble Sugar, Growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以硝态氮(NO3+-N)作为唯一氮形态的模拟污水,以浮水植物大薸为受试材料,研究了大薸对硝态氮的去除效果以及生长参数、硝酸还原酶、抗氧化酶活性和可溶性糖等的生理响应变化。结果表明,随外源硝态氮浓度的增加,培养液中硝态氮的减少量也越多。与对照值相比,施加硝态氮对大薸的硝酸还原酶活性产生明显的抑制作用,最多可达约44%。硝态氮对大薸的生长没有产生明显影响,处理组的叶绿素含量、可溶性蛋白和可溶性糖含量都高于对照组。NO3+-N激活了大薸体内的抗氧化酶活性,比如SOD,CAT和POD (LN和MN)。总体来说,可溶性糖含量上升和抗氧化酶激活支持它们有效参与、改善大薸对NO3+-N的耐性。
In this study, the eliminate capacity for nitrate nitrogen (NO3+-N) and the effects of nitrate-nitrogen on growth index, nitrate reductase and antioxidant enzyme activities, and soluble sugar were investigated in Pistia stratiotes growing in simulated wastewater using NO3+-N as the sole nitrogen form. The results indicated that the loss of NO3+-N increased significantly with augment of exogenous NO3+-N in cultural solution. Compared to the control value, plants supplied with NO3+-N had decreased nitrate reductase activity with the maximum reduction of 44%. The NO3+-N had less influence on growth of P. stratiotes. Pigment, soluble protein and soluble sugar content was significantly higher (P < 0.01) in NO3+-N treated P. stratiotes respectively, compared to controls. The activation of antioxidant enzymes, such as superoxide dismutase and catalase, peroxidase (LN and MN) was observed in NO3+-N exposed P. stratiotes. Overall, the increase in concentration of soluble sugar and activation of antioxidative enzymes support their effective involvement in improving NO3+-N tolerancein P. stratiotes.

References

[1]  种云霄, 胡洪营, 钱易. pH及无机氮化合物对小浮萍生长的影响[J]. 环境科学, 2003, 24(4): 35-40.
[2]  Rahman, M.A. and Hasegawa, H. (2011) Aquatic Arsenic: Phytoremediation Using Floating Macrophytes. Chemosphere, 83, 633-646.
https://doi.org/10.1016/j.chemosphere.2011.02.045
[3]  Wu, W., Liu, A., Wu, K., et al. (2016) The Physiological and Biochemical Mechanism of Nitrate-Nitrogen Removal by Water Hyacinth from Agriculture Eutrophic Wastewater. Brazilian Archives Biology and Technology, 59, e16160517.
https://doi.org/10.1590/1678-4324-2016160517
[4]  Iamchaturapatr, J., Yi, S.W. and Rhee, J.S. (2007) Nutrient Removals by 21 Aquatic Plants for Vertical Free Surface-Flow (VFS) Constructed Wetland. Ecological Engineering, 29, 287-293.
https://doi.org/10.1016/j.ecoleng.2006.09.010
[5]  胡啸, 蔡辉, 陈刚, 等. 3种类型水生植物及其组合对污染水体中铬、氮和磷的净化效果研究[J]. 水处理技术, 2012, 38(4): 45-54.
[6]  耿兵, 张燕荣, 王妮珊, 等. 不同水生植物净化污染水源水的试验研究[J]. 农业环境科学学报, 2011, 30(3): 548-553.
[7]  Victor, K.K., Seka, Y., Norbert, K.K., et al. (2016) Phytoremediation of Wastewaters Toxicity Using Water Hyacinth (Eichhornia crassipes) and Water Lettuce (Pistia stratiotes). International Journal of Phytoremediation, 18, 949-955.
https://doi.org/10.1080/15226514.2016.1183567
[8]  张建聪, 赵洋毅, 段旭, 等. 磷胁迫对高原湿地浮水植物大薸根系分泌物的影响[J]. 环境化学, 2019, 38(2): 385-394.
[9]  李猛, 马旭洲, 王武. 大薸对水体氮磷去除效果的初步研究[J]. 长江流域资源与环境, 2012, 21(9): 1137-1142.
[10]  刘盼, 宋超, 朱华, 等. 3种水生植物对富营养化水体的净化作用研究[J]. 水生态学杂志, 2011, 32(2): 69-74.
[11]  国家环保局. 水和废水监测方法(第3版) [M]. 北京: 中国环境科学出版社, 1997: 272.
[12]  Khellaf, N. and Zerdaoui, M. (2010) Growth Response of the Duckweed Lemna gibba L. to Copper and Nickel Phytoaccumulation. Ecotoxicology, 19, 1363-1368.
https://doi.org/10.1007/s10646-010-0522-z
[13]  Lichtenthaler, H.K. (1987) Chlorophylls and Carotenoids: Pigments of Photosynthetic Membranes. Methods in Enzymology, 148, 350-382.
https://doi.org/10.1016/0076-6879(87)48036-1
[14]  李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[15]  张志良. 植物生理学实验指导(第2版) [M]. 北京: 高等教育出版社, 1990: 183-184.
[16]  门中华, 李生秀. 水培硝态氮浓度对冬小麦幼苗氮代谢的影响[J]. 广西植物, 2010, 30(4): 544-550.
[17]  陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5): 1424-1433.
[18]  Hermans, C., Hammond, J.P., White, P.J., et al. (2006) How Do Plants Respond to Nutrient Shortage by Biomass Allocation. Trends in Plant Science, 11, 610-617.
https://doi.org/10.1016/j.tplants.2006.10.007
[19]  葛芳杰, 刘碧云, 鲁志营, 等. 不同氮、磷浓度对穗花狐尾藻生长及酚类物质含量的影响[J]. 环境科学学报, 2012, 32(2): 472-479.
[20]  Pearce, I.S.K., Woodins, S.J. and van der Wal, R. (2003) Physiological and Growth Responses of the Montane Bryophyte Racomitrium lanuginosum to Atmospheric Nitrogen Deposition. New Phytologist, 160, 145-155.
https://doi.org/10.1046/j.1469-8137.2003.00875.x
[21]  刘鹏, 俞惠娜, 张晓斌, 等. 几种水生观赏植物对城市污水的生理响应[J]. 水土保持学报, 2008, 22(41): 163-167.
[22]  杨瑾, 王铭, 李涛, 等. 氮胁迫对雨生红球藻色素积累与抗氧化系统的影响[J]. 植物生理学报, 2011, 47(2): 147-152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133