|
Optoelectronics 2020
激光显示技术的研究现状及进展
|
Abstract:
本文主要介绍了显示技术的发展到国内外激光显示研究现状及进展。自显示技术发展以来,经历了一系列的更新换代,传统显示技术在高清晰视频图像方面已经相当成熟,但是在颜色的高还原问题上却还处于初步研发阶段,没有取得显著进展。随着激光器的出现,显示用光源突破了原有光源的局限性。大色域覆盖率的激光显示的优越性,掀起了显示技术更新换代的热潮。近年激光显示产品,逐渐占据了一定的显示产品的市场份额。促进了显示技术的革命,国内外都加紧制定了激光显示发展战略。用激光取代原有光源的激光显示技术,继黑白、彩色和数字这三种显示技术之后的第四代“继承者”。它具有其独特的优点:色域覆盖的范围更广、使用寿命更长、环保、低功耗。其将给显示行业带来发展机遇,甚至是未来一段时间内主流的显示技术。当激光显示与全息技术结合应用,便会产生一种兼顾两者优势特点的激光全息技术。激光全息的出现,再次促进了显示行业的显著发展。
This paper mainly introduces the development of display technology, the research status and progress of laser display at home and abroad. Since the development of display technology, it has experienced a series of updates. The traditional display technology has been quite mature in high-definition video image, but it is still in the initial stage of research and development on the issue of high color restoration, and no significant progress has been made. With the emergence of laser, the light source for display breaks through the limitation of the original light source. The advantages of large color gamut coverage of laser display set off the upsurge of display technology upgrading. In recent years, laser display products gradually occupy a certain market share of display products. It has promoted the revolution of display technology, and the development strategy of laser display has been formulated at home and abroad. Laser display technology, which replaces the original light source with laser, is the fourth generation “successor” of black-and-white, color and digital display technology. It has its unique advantages: wider gamut coverage, longer service life, environmental protection, low power consumption. It will bring development opportunities to the display industry, even the mainstream display technology in the future. When laser display and holographic technology are combined, a laser holographic technology will be produced which takes into account the advantages of both. The appearance of laser holography promotes the development of display industry.
[1] | 王立军. 大功率半导体激光在智能装备制造领域的应用[J]. 广东科技, 2016, 25(17): 20-23. |
[2] | 彭秀林, 杨昌盛, 邓华秋, 谭天奕, 关先朝, 赵齐来, 冯洲明, 徐善辉. 蓝绿光单频激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 84-97. |
[3] | 赵宏伟. 许祖彦: 激光技术, 人类视觉史上的一场革命[J]. 中国高新技术企业, 2010(17): 70-73. |
[4] | 翟强. 激光显示: 下一代的显示技术[J]. 中国科技投资, 2008(1): 54-55. |
[5] | 秦德虎. 激光显示与安防[J]. 中国安防, 2015(17): 58-63. |
[6] | 屈伟平. 激光显示技术掀起色彩革命[J]. 有线电视技术, 2010, 17(2): 76-78+107. |
[7] | 李鹏飞, 徐恩波, 淡美俊. 近代显示技术综述[J]. 电子制作, 2018(14): 77-78. |
[8] | 云怡嘉. 毕勇: 领航中国激光显示技术[J]. 中国高新科技, 2018(23): 25-26. |
[9] | 长虹发布柔性显示技术CHiQ激光影院[J]. 电子世界, 2017(1): 16-17. |
[10] | 激光显示技术[J]. 高科技与产业化, 2013(9): 61-64. |
[11] | 激光显示技术取得新进展全球首家激光影院在北京揭幕[J]. 光学仪器, 2008(4): 35. |
[12] | 张岳, 郝丽, 柳华, 刘伟奇. 激光显示的原理与实现[J]. 光学精密工程, 2006, 14(3): 402-405. |
[13] | 许春帆. 激光显示技术的发展概况[J]. 激光与红外, 1979(6): 8-16. |
[14] | 激光显示技术在国外的发展[J]. 电子元件与材料, 2008(4): 68. |
[15] | Vinci. 颠覆传统视觉感受的激光显示技术[J]. 家庭影院技术, 2008(6): 53. |
[16] | 毕勇. 激光全色显示技术[J]. 新材料产业, 2009(4): 61-65. |
[17] | 汪百知. 激光显示: 一次革命性的行业洗礼[J]. 高科技与产业化, 2017(1): 74-77. |
[18] | Michael, H., Bala, M. and Harold, G. (2003) Dynamic Holographic 3-D Image Projection. Optics Express, 11, 437-445.
https://doi.org/10.1364/OE.11.000437 |
[19] | Moench, H. (2008) New Markets and New Light-Sources for Projection. Proceedings of SPIE, 6911, 69110Y.
https://doi.org/10.1117/12.779673 |
[20] | Vierheilig, C., Eichler, C., Tautz, S., et al. (2012) Beyond Blue Pico Laser: Development of high Power Blue and Low Power Direct Green. Proceedings of SPIE, 8277, 82770K. https://doi.org/10.1117/12.917469 |
[21] | 石君, 唐明, 付松年, 沈平, 刘德明. 面向激光显示应用的红绿蓝掺镨氟化物光纤激光器研究进展[J]. 激光与光电子学进展, 2012, 49(11): 21-27. |
[22] | Buckley, E. (2011) Laser Wavelength Choices for Pico-Projector Applications. Journal of Display Technology, 7, 402-406. https://doi.org/10.1109/JDT.2011.2125944 |
[23] | Jeong, H.M., Park, Y.H. and Lee, J.H. (2008) Slow Scanning Electromagnetic Scanner for Laser Display. Journal of Microlithography Microfabrication & Microsystems, 7, 1589-1604. https://doi.org/10.1117/12.762549 |
[24] | Buckley, E. (2012) Detailed Eye-Safety Analysis of Laser-Based Scanned-Beam Projection Systems. Journal of Display Technology, 8, 166-173. https://doi.org/10.1109/JDT.2011.2170955 |
[25] | 孟雪, 宁永强, 张建伟, 张星, 彭航宇, 秦莉, 王立军. 面向激光显示的红光半导体激光器的研究进展[J]. 激光与光电子学进展, 2019, 56(18): 9-20. |
[26] | 王文亮, 曹涧秋, 郭少锋, 姜宗福, 许晓军. 增益导引折射率反导引光纤激光器研究进展[J]. 激光与光电子学进展, 2012, 49(4): 31-36. |
[27] | Chen, B.C., Chen, K.H., Yu, J.W., Ho, C.Y. and Wen, M.Y. (2017) Analysis of Junction Temperatures for Groups III–V Semiconductor Materials of Light-Emitting Diodes. Optical and Quantum Electronics, 49, Article No. 183.
https://doi.org/10.1007/s11082-017-1015-6 |
[28] | Lu, B., Osinski, J.S., Vail, E., et al. (2002) High Power 635nm Low-Divergence Ridge Waveguide Single Mode Lasers. Electronics Letters, 34, 272. https://doi.org/10.1049/el:19980223 |
[29] | Hung, C.T., Huang, S.C. and Lu, T.C. (2013) Optical Mode Modulation of AlGaInP Multi Quantum Well Laser Diodes. Proceedings of SPIE, 8816, 88160L. https://doi.org/10.1117/12.2024042 |
[30] | Freeman, M., Champion, M. and Madhavan, S. (2009) Scanned Laser Pi-co-Projectors: Seeing the Big Picture (With a Small Device). Optics and Photonics News, 20, 29-34. https://doi.org/10.1364/OPN.20.5.000028 |