全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2020 

微生物群与肿瘤发生相关性的研究进展
Correlation between Microbiota and Oncogenesis: Research Progress

DOI: 10.12677/BP.2020.103003, PP. 15-19

Keywords: 微生物群,机体,肿瘤,精准防控
Microbiota
, Body, Cancer, Precise prevention

Full-Text   Cite this paper   Add to My Lib

Abstract:

正常微生物群与机体形成共生的关系,与机体健康或疾病状态密切相关。尽管机体内微生物群的组成受到年龄、环境、生活方式等因素的影响,但在正常生理情况下处于稳定状态。微生物群可以参与调节机体代谢、炎症反应和免疫应答等生理过程,维持着机体的局部稳态。近年来,越来越多的研究表明,微生物群与肿瘤的发生具有相关性。本文将综述微生物群影响肿瘤发生发展的研究证据,以及其中所涉及的微生物种类,为肿瘤的精准预防及治疗提供依据。
The normal microbiota forms a symbiotic relationship with the body, which is closely related to the body’s health or disease state. Although the composition of the microbiota in the body is affected by factors such as age, environment, and lifestyle, it is in a stable state under normal physiological conditions. The microbiota can participate in the regulation of physiological processes such as metabolism, inflammation and immune response, and maintain the body’s local homeostasis. In recent years, more and more studies have shown that the microbiota is related to the occurrence of cancer. This article will review the research evidence that the microbiota affects the occurrence and development of tumors, as well as the types of microorganisms involved, to provide a basis for the precise prevention and treatment of cancer.

References

[1]  Lederberg, J. (2000) Infectious History. Science, 288, 287-293.
https://doi.org/10.1126/science.288.5464.287
[2]  Zhernakova, A., Kurilshikov, A. and Bonder, M.J. (2016) Pop-ulation-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science, 352, 565-569.
https://doi.org/10.1126/science.aad3369
[3]  Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400.
https://doi.org/10.1038/nm.4517
[4]  Tateda, M., Shiga, K., Saijo, S., et al. (2000) Streptococcus Anginosus in Head and Neck Squamous Cell Carcinoma: Implication in Carcinogenesis. International Journal of Molecular Medicine, 6, 699-703.
https://doi.org/10.3892/ijmm.6.6.699
[5]  Zhang, W.L., Wang, S.S., Wang, H.F., et al. (2019) Who Is Who in Oral Cancer? Experimental Cell Research, 384, Article ID: 111634.
https://doi.org/10.1016/j.yexcr.2019.111634
[6]  Kylma, A.K., Jouhi, L., Listyarifah, D., et al. (2018) Treponema Denticola Chymotrypsin-Like Proteinase as Associated with HPV-Negative Oropharyngeal Squamous Cell Carcinoma. British Journal of Cancer, 119, 89-95.
https://doi.org/10.1038/s41416-018-0143-5
[7]  Jahanshiri, Z., Manifar, S., Moosa, H., et al. (2018) Oropharyn-geal Candidiasis in Head and Neck Cancer Patients in Iran: Species Identification, Antifungal Susceptibility and Patho-genic Characterization. Journal de Mycologie Médicale, 28, 361-366.
https://doi.org/10.1016/j.mycmed.2018.01.001
[8]  Ye, Q., Li, X.L., Chen, Y.S., et al. (2016) Diagnostic Value of Serological Epstein-Barr Viral Antibodies and Epstein-Barr Viral DNA Assays in the Management of Nasopharyngeal Carcinoma. Modern Oncology, 24, 3045-3048.
[9]  Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., et al. (2016) The Microbiome and the Respiratory Tract. Annual Review of Physiology, 78, 481-504.
https://doi.org/10.1146/annurev-physiol-021115-105238
[10]  Bassis, C.M., Erb-downward, J.R., Dickson, R.P., et al. (2015) Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 6, e37.
https://doi.org/10.1128/mBio.00037-15
[11]  Dickson, R.P., Erb-downward, J.R., Freeman, C.M., et al. (2015) Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 12, 821-830.
https://doi.org/10.1513/AnnalsATS.201501-029OC
[12]  Apopa, P.L., Alley, L., Penney, R.B., et al. (2018) PARP1 Is Up-Regulated in Non-Small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcys-tin. Frontiers in Microbiology, 9, 1757.
https://doi.org/10.3389/fmicb.2018.01757
[13]  Lin, T.Y., Huang, W.Y., Lin, J.C., et al. (2014) Increased Lung Cancer Risk among Patients with Pneumococcal Pneumonia: A Nation-Wide Population-Based Cohort Study. Lung, 192, 159-165.
https://doi.org/10.1007/s00408-013-9523-z
[14]  Greathouse, K.L., White, J.R., Vargas, A.J., et al. (2018) Interac-tion between the Microbiome and TP53 in Human Lung Cancer. Genome Biology, 19, 123.
https://doi.org/10.1186/s13059-018-1501-6
[15]  Yu, G., Gail, M.H., Consonni, D., et al. (2016) Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biology, 17, 163.
https://doi.org/10.1186/s13059-016-1021-1
[16]  Ishaq, S. and Nunn, L. (2015) Helicobacter pylori and Gastric Cancer: A State-of-the-Art Review. Gastroenterology and Hepatology from Bed to Bench, 8, S6-S14.
[17]  He, C., Yang, Z. and Lu, N. (2016) Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter, 21, 337-348.
https://doi.org/10.1111/hel.12297
[18]  Coker, O.O., Dai, Z., Nie, Y., et al. (2018) Mucosal Microbiome Dysbiosis in Gastric Carcinogenesis. Gut, 67, 1024-1032.
https://doi.org/10.1136/gutjnl-2017-314281
[19]  Nakatsu, G., Li, X., Zhou, H., et al. (2015) Gut Mucosal Micro-biome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, 8727.
https://doi.org/10.1038/ncomms9727
[20]  Kostic, A.D., Chun, E., Robertson, L., et al. (2013) Fusobacterium Nu-cleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe, 14, 207-215.
https://doi.org/10.1016/j.chom.2013.07.007
[21]  Dejea, C.M., Fathi, P., Craig, J.M., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597.
https://doi.org/10.1126/science.aah3648
[22]  He, Z., Gharaibeh, R.Z., Newsome, R.C., et al. (2019) Campylobac-ter jejuni Promotes Colorectal Tumorigenesis through the Action of Cytolethal Distending Toxin. Gut, 68, 289-300.
https://doi.org/10.1136/gutjnl-2018-317200
[23]  Rubinstein, M.R., Wang, X., Liu, W., et al. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012
[24]  Kim, J.M., Lee, J.Y. and Kim, Y.J. (2008) Inhibition of Apoptosis in Bacteroides fragilis Enterotoxin-Stimulated Intestinal Epithelial Cells through the Induction of c-IAP-2. European Journal of Immunology, 38, 2190-2199.
https://doi.org/10.1002/eji.200838191
[25]  Ni, J., Huang, R., Zhou, H., et al. (2019) Analysis of the Relationship between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carci-noma. Frontiers in Microbiology, 10, 1458.
https://doi.org/10.3389/fmicb.2019.01458
[26]  Yu, L.X. and Schwabe, R.F. (2017) The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nature Reviews Gastroenterology & Hepatology, 14, 527-539.
https://doi.org/10.1038/nrgastro.2017.72
[27]  Chen, Y., Li, H., Li, M., et al. (2017) Salvia Mihiorrhiza Polysaccha-ride Activates T Lymphocytes of Cancer Patients through Activation of TLRs Mediated-MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 200, 165-173.
https://doi.org/10.1016/j.jep.2017.02.029
[28]  Fox, J.G., Feng, Y., Theve, E.J., et al. (2010) Gut Microbes Define Liver Cancer Risk in Mice Exposed to Chemical and Viral Transgenic Hepatocarcinogens. Gut, 59, 88-97.
https://doi.org/10.1136/gut.2009.183749
[29]  Wang, H., Shang, X., Wan, X., et al. (2016) Increased Hepatocellular Carcinoma Risk in Chronic Hepatitis B Patients with Persistently Elevat-ed Serum Total Bile Acid: A Retrospective Cohort Study. Scientific Reports, 6, Article No. 38180.
https://doi.org/10.1038/srep38180
[30]  Laniewski, P., Cui, H., Roe, D.J., et al. (2019) Features of the Cervicovag-inal Microenvironment Drive Cancer Biomarker Signatures in Patients across Cervical Carcinogenesis. Scientific Reports, 9, Article No. 7333.
https://doi.org/10.1038/s41598-019-43849-5
[31]  Klomp, J.M., Boon, M.E., Van Haaften, M., et al. (2008) Cyto-logically Diagnosed Gardnerella vaginalis Infection and Cervical (Pre)neoplasia as Established in Population-Based Cer-vical Screening. American Journal of Obstetrics & Gynecology, 199, 480.
https://doi.org/10.1016/j.ajog.2008.04.036
[32]  Ilhan, Z.E., Laniewski, P., Thomas, N., et al. (2019) Deciphering the Complex Interplay between Microbiota, HPV, Inflammation and Cancer through Cervicovaginal Metabolic Profiling. EBio Medicine, 44, 675-690.
https://doi.org/10.1016/j.ebiom.2019.04.028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133