|
Bioprocess 2020
微生物群与肿瘤发生相关性的研究进展
|
Abstract:
[1] | Lederberg, J. (2000) Infectious History. Science, 288, 287-293. https://doi.org/10.1126/science.288.5464.287 |
[2] | Zhernakova, A., Kurilshikov, A. and Bonder, M.J. (2016) Pop-ulation-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science, 352, 565-569. https://doi.org/10.1126/science.aad3369 |
[3] | Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. https://doi.org/10.1038/nm.4517 |
[4] | Tateda, M., Shiga, K., Saijo, S., et al. (2000) Streptococcus Anginosus in Head and Neck Squamous Cell Carcinoma: Implication in Carcinogenesis. International Journal of Molecular Medicine, 6, 699-703.
https://doi.org/10.3892/ijmm.6.6.699 |
[5] | Zhang, W.L., Wang, S.S., Wang, H.F., et al. (2019) Who Is Who in Oral Cancer? Experimental Cell Research, 384, Article ID: 111634. https://doi.org/10.1016/j.yexcr.2019.111634 |
[6] | Kylma, A.K., Jouhi, L., Listyarifah, D., et al. (2018) Treponema Denticola Chymotrypsin-Like Proteinase as Associated with HPV-Negative Oropharyngeal Squamous Cell Carcinoma. British Journal of Cancer, 119, 89-95.
https://doi.org/10.1038/s41416-018-0143-5 |
[7] | Jahanshiri, Z., Manifar, S., Moosa, H., et al. (2018) Oropharyn-geal Candidiasis in Head and Neck Cancer Patients in Iran: Species Identification, Antifungal Susceptibility and Patho-genic Characterization. Journal de Mycologie Médicale, 28, 361-366. https://doi.org/10.1016/j.mycmed.2018.01.001 |
[8] | Ye, Q., Li, X.L., Chen, Y.S., et al. (2016) Diagnostic Value of Serological Epstein-Barr Viral Antibodies and Epstein-Barr Viral DNA Assays in the Management of Nasopharyngeal Carcinoma. Modern Oncology, 24, 3045-3048. |
[9] | Dickson, R.P., Erb-Downward, J.R., Martinez, F.J., et al. (2016) The Microbiome and the Respiratory Tract. Annual Review of Physiology, 78, 481-504. https://doi.org/10.1146/annurev-physiol-021115-105238 |
[10] | Bassis, C.M., Erb-downward, J.R., Dickson, R.P., et al. (2015) Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. MBio, 6, e37.
https://doi.org/10.1128/mBio.00037-15 |
[11] | Dickson, R.P., Erb-downward, J.R., Freeman, C.M., et al. (2015) Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Annals of the American Thoracic Society, 12, 821-830.
https://doi.org/10.1513/AnnalsATS.201501-029OC |
[12] | Apopa, P.L., Alley, L., Penney, R.B., et al. (2018) PARP1 Is Up-Regulated in Non-Small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcys-tin. Frontiers in Microbiology, 9, 1757.
https://doi.org/10.3389/fmicb.2018.01757 |
[13] | Lin, T.Y., Huang, W.Y., Lin, J.C., et al. (2014) Increased Lung Cancer Risk among Patients with Pneumococcal Pneumonia: A Nation-Wide Population-Based Cohort Study. Lung, 192, 159-165.
https://doi.org/10.1007/s00408-013-9523-z |
[14] | Greathouse, K.L., White, J.R., Vargas, A.J., et al. (2018) Interac-tion between the Microbiome and TP53 in Human Lung Cancer. Genome Biology, 19, 123. https://doi.org/10.1186/s13059-018-1501-6 |
[15] | Yu, G., Gail, M.H., Consonni, D., et al. (2016) Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biology, 17, 163. https://doi.org/10.1186/s13059-016-1021-1 |
[16] | Ishaq, S. and Nunn, L. (2015) Helicobacter pylori and Gastric Cancer: A State-of-the-Art Review. Gastroenterology and Hepatology from Bed to Bench, 8, S6-S14. |
[17] | He, C., Yang, Z. and Lu, N. (2016) Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter, 21, 337-348. https://doi.org/10.1111/hel.12297 |
[18] | Coker, O.O., Dai, Z., Nie, Y., et al. (2018) Mucosal Microbiome Dysbiosis in Gastric Carcinogenesis. Gut, 67, 1024-1032.
https://doi.org/10.1136/gutjnl-2017-314281 |
[19] | Nakatsu, G., Li, X., Zhou, H., et al. (2015) Gut Mucosal Micro-biome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, 8727. https://doi.org/10.1038/ncomms9727 |
[20] | Kostic, A.D., Chun, E., Robertson, L., et al. (2013) Fusobacterium Nu-cleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe, 14, 207-215.
https://doi.org/10.1016/j.chom.2013.07.007 |
[21] | Dejea, C.M., Fathi, P., Craig, J.M., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597. https://doi.org/10.1126/science.aah3648 |
[22] | He, Z., Gharaibeh, R.Z., Newsome, R.C., et al. (2019) Campylobac-ter jejuni Promotes Colorectal Tumorigenesis through the Action of Cytolethal Distending Toxin. Gut, 68, 289-300. https://doi.org/10.1136/gutjnl-2018-317200 |
[23] | Rubinstein, M.R., Wang, X., Liu, W., et al. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012 |
[24] | Kim, J.M., Lee, J.Y. and Kim, Y.J. (2008) Inhibition of Apoptosis in Bacteroides fragilis Enterotoxin-Stimulated Intestinal Epithelial Cells through the Induction of c-IAP-2. European Journal of Immunology, 38, 2190-2199.
https://doi.org/10.1002/eji.200838191 |
[25] | Ni, J., Huang, R., Zhou, H., et al. (2019) Analysis of the Relationship between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carci-noma. Frontiers in Microbiology, 10, 1458.
https://doi.org/10.3389/fmicb.2019.01458 |
[26] | Yu, L.X. and Schwabe, R.F. (2017) The Gut Microbiome and Liver Cancer: Mechanisms and Clinical Translation. Nature Reviews Gastroenterology & Hepatology, 14, 527-539. https://doi.org/10.1038/nrgastro.2017.72 |
[27] | Chen, Y., Li, H., Li, M., et al. (2017) Salvia Mihiorrhiza Polysaccha-ride Activates T Lymphocytes of Cancer Patients through Activation of TLRs Mediated-MAPK and NF-κB Signaling Pathways. Journal of Ethnopharmacology, 200, 165-173. https://doi.org/10.1016/j.jep.2017.02.029 |
[28] | Fox, J.G., Feng, Y., Theve, E.J., et al. (2010) Gut Microbes Define Liver Cancer Risk in Mice Exposed to Chemical and Viral Transgenic Hepatocarcinogens. Gut, 59, 88-97. https://doi.org/10.1136/gut.2009.183749 |
[29] | Wang, H., Shang, X., Wan, X., et al. (2016) Increased Hepatocellular Carcinoma Risk in Chronic Hepatitis B Patients with Persistently Elevat-ed Serum Total Bile Acid: A Retrospective Cohort Study. Scientific Reports, 6, Article No. 38180. https://doi.org/10.1038/srep38180 |
[30] | Laniewski, P., Cui, H., Roe, D.J., et al. (2019) Features of the Cervicovag-inal Microenvironment Drive Cancer Biomarker Signatures in Patients across Cervical Carcinogenesis. Scientific Reports, 9, Article No. 7333.
https://doi.org/10.1038/s41598-019-43849-5 |
[31] | Klomp, J.M., Boon, M.E., Van Haaften, M., et al. (2008) Cyto-logically Diagnosed Gardnerella vaginalis Infection and Cervical (Pre)neoplasia as Established in Population-Based Cer-vical Screening. American Journal of Obstetrics & Gynecology, 199, 480. https://doi.org/10.1016/j.ajog.2008.04.036 |
[32] | Ilhan, Z.E., Laniewski, P., Thomas, N., et al. (2019) Deciphering the Complex Interplay between Microbiota, HPV, Inflammation and Cancer through Cervicovaginal Metabolic Profiling. EBio Medicine, 44, 675-690.
https://doi.org/10.1016/j.ebiom.2019.04.028 |