|
超声处理对SiC颗粒增强铝基复合材料微结构与性能的影响
|
Abstract:
利用超声波预处理颗粒与合金熔体的复合工艺制备SiC颗粒增强铝基复合材料,研究七种不同的超声预处理工艺对SiC颗粒表面清洁度与润湿性的影响规律,研究搅拌过程中不同超声功率、施振时间对增强体颗粒分布、界面形态与材料原生性能的影响规律及作用机制。结果表明:高温焙烧工艺可以显著改善颗粒的清洁度与润湿性;增大超声功率能够增强对SiC颗粒团聚的抑制作用,提高其在基体组织分布的均匀性,在功率一定的条件下,施振时间不宜过长,否则超声的驻波效应将形成颗粒的二次偏聚。
SiC particles reinforced aluminum matrix composites were prepared through processing particles and alloy melt by ultrasonic. The effect of seven kinds of ultrasonic pretreatment processes on cleanliness and wettability of SiC particle surface was studied. Meanwhile, the effect and action mechanism of ultrasonic power and vibration time on reinforced particle distribution, interface morphology and primary properties of materials were studied. The results show that the cleanliness and wettability of the SiC particle can be greatly improved by the high temperature roasting process. Increasing the ultrasonic power can enhance the inhibition of particle agglomeration and improve its uniformity of the distribution in the matrix. The appropriate prolongation of ultrasonic vibration time can also reduce the agglomeration of particles. However, the ultrasonic vibration time should not be too long; otherwise the second segregation of SiC particles will be formed due to the effect of the ultrasonic standing wave.?
[1] | 中国工程院. 复合材料技术与应用可持续发展[R]. 中国工程院工程科技论坛, 2006. |
[2] | 钟山, 田峰, 刘宇, 等. 2013年民航经济运行回顾与展望[J]. 中国民用航空, 2014(2): 20-23. |
[3] | 中国科学院先进材料领域战略研究组. 中国至2050年先进材料科技发展路线图[M]. 北京: 科学出版社, 2009: 36-39. |
[4] | 杨乃宾, 梁伟. 大飞机复合材料结构设计导论[M]. 北京: 航空工业出版社, 2009: 71-80. |
[5] | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
[6] | Li, R., Liu, Z., Dong, F., et al. (2016) Grain Refinement of a Large-Scale Al Alloy Casting by Introducing the Multiple Ultrasonic Generator During Solidification. Metallurgical and Materials Transactions A, 47, 3790-3796.
https://doi.org/10.1007/s11661-016-3576-6 |
[7] | Jiang, R.P., Li, X.Q. and Zhang, M. (2015) Investigation on the Mechanism of Grain Refinement in Aluminum Alloy Solidified under Ultrasonic Vibration. Metals and Materials International, 21, 104-108.
https://doi.org/10.1007/s12540-015-1012-x |
[8] | Jian, X., Xu, H., Meek, T.T. and Han, Q. (2005) Effect of Power Ultrasound on Solidification of Aluminum A356 Alloy. Materials Letters, 59, 190-193. https://doi.org/10.1016/j.matlet.2004.09.027 |
[9] | Li, X.Q., Jiang, R.P., et al. (2012) Characteristics and Formation Mechanism of Segregation during the Solidification of Aluminum Alloy with Ultrasonic Radiation. Materials Science Forum, 697-698, 383-388.
https://doi.org/10.4028/www.scientific.net/MSF.697-698.383 |
[10] | 潘蕾, 陶杰, 刘子利, 等. 超声复合法制备的SiCP/ZA27复合材料的力学性能[J]. 南京航空航天大学学报, 2005, 37(5): 653-658. |
[11] | Pan, J., Yoshida, M. and Sasaki, G. (2000) Ultrasonic Insert Casting of Aluminum Alloy. Scripta Materialia, 44, 155-159. https://doi.org/10.1016/S1359-6462(00)00385-7 |
[12] | Shi, Z.L., Zhang, D., Wu, R.J., et al. (2001) The Interfacial Characterization of Oxidized SiCp/2014Al Composites. Materials Science and Engineering A, 303, 46-53. https://doi.org/10.1016/S0921-5093(00)01943-2 |
[13] | 蒋日鹏. 超声场对高强铝合金凝固过程的影响规律与作用机理研究[D]: [博士学位论文]. 长沙: 中南大学, 2014. |
[14] | 刘荣光. 超声波在铝熔体中的声场分布和空化效应及其对凝固过程影响[D]: [硕士学位论文]. 长沙: 中南大学, 2007. |
[15] | 冯诺, 李化茂. 声化学及应用[M]. 合肥: 安徽科技出版社, 1990: 112-115. |
[16] | 胡岳华, 徐竞, 邱冠周, 等. 细粒浮选体系中颗粒间静电及范德华相互作用[J]. 有色矿冶, 1994(2): 16-21. |
[17] | 阳丽, 孔令江. 微纳米球形颗粒之间的毛细力研究[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 1-4. |
[18] | Eskin, G.I.G.I. and Eskin, D.G. (2015) Ultrasonic Treatment of Light Alloy Melts. CRC Press/Taylor & Francis Group, Boca Raton, 35-60. https://doi.org/10.1201/b17270 |
[19] | 白晓清, 赫冀成. 超声波作用下微粒凝集过程参数的研究[J]. 东北大学学报, 2001, 22(8): 413-415. |