全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Author–Subject–Topic model for reviewer recommendation

DOI: 10.1177/0165551518806116

Keywords: Author–Subject–Topic model,expert finding,expert recommendation,reviewer assignment,reviewer recommendation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interdisciplinary studies are becoming increasingly popular, and research domains of many experts are becoming diverse. This phenomenon brings difficulty in recommending experts to review interdisciplinary submissions. In this study, an Author–Subject–Topic (AST) model is proposed with two versions. In the model, reviewers’ subject information is embedded to analyse topic distributions of submissions and reviewers’ publications. The major difference between the AST and Author–Topic models lies in the introduction of a ‘Subject’ layer, which supervises the generation of hierarchical topics and allows sharing of subjects among authors. To evaluate the performance of the AST model, papers in Information System and Management (a typical interdisciplinary domain) in a famous Chinese academic library are investigated. Comparative experiments are conducted, which show the effectiveness of the AST model in topic distribution analysis and reviewer recommendation for interdisciplinary studies

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133