全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review

DOI: 10.1177/0165551517692955

Keywords: Collaborative filtering,hybrid recommendation system,opinion mining,purchase review

Full-Text   Cite this paper   Add to My Lib

Abstract:

The most commonly used algorithm in recommendation systems is collaborative filtering. However, despite its wide use, the prediction accuracy of this algorithm is unexceptional. Furthermore, whether quantitative data such as product rating or purchase history reflect users’ actual taste is questionable. In this article, we propose a method to utilise user review data extracted with opinion mining for product recommendation systems. To evaluate the proposed method, we perform product recommendation test on Amazon product data, with and without the additional opinion mining result on Amazon purchase review data. The performances of these two variants are compared by means of precision, recall, true positive recommendation (TPR) and false positive recommendation (FPR). In this comparison, a large improvement in prediction accuracy was observed when the opinion mining data were taken into account. Based on these results, we answer two main questions: ‘Why is collaborative filtering algorithm not effective?’ and ‘Do quantitative data such as product rating or purchase history reflect users’ actual tastes?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133