全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Computational fluid dynamics investigation on the effect of co

DOI: 10.1177/0957650918783923

Keywords: Pulverized boiler,semi-coke,co-firing,NOx emission,computational fluid dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the effect of co-firing semi-coke in a 300?MW tangentially fired boiler was numerically investigated. The results indicate that the incomplete combustion heat loss and NOx emission both increase with semi-coke co-fired ratio. Semi-coke may be injected into the furnace at a different height, which can lead to different thermal efficiency and NOx emission. It is suggested that semi-coke should not be fed from the top or bottom layer burners, since this could give rise to high carbon content respectively in fly ash and bottom slag. In addition, injecting semi-coke from the top burners could significantly increase the NOx emission. Under 1/2 co-firing ratio, the optimal fuel allocation is that feeding semi-coke from the B, D, and E layer burners. The growth in semi-coke particle size could increase the unburned carbon loss and NOx emission. It is highly recommended to reduce the unburned carbon loss under semi-coke co-fired condition by increasing the stoichiometric ratio of primary air for semi-coke. As it is increased from 0.25 to 0.3, the combustion efficiency of the co-fired condition is 99.47%, the same as when only firing bituminous coal, and the NOx emission is about 30% higher

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133