全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Log

DOI: 10.1177/0049124116638107

Keywords: pseudo-R2,logistic regression,goodness-of-fit,benchmarks,reporting

Full-Text   Cite this paper   Add to My Lib

Abstract:

The literature proposes numerous so-called pseudo-R2 measures for evaluating “goodness of fit” in regression models with categorical dependent variables. Unlike ordinary least square-R2, log-likelihood-based pseudo-R2s do not represent the proportion of explained variance but rather the improvement in model likelihood over a null model. The multitude of available pseudo-R2 measures and the absence of benchmarks often lead to confusing interpretations and unclear reporting. Drawing on a meta-analysis of 274 published logistic regression models as well as simulated data, this study investigates fundamental differences of distinct pseudo-R2 measures, focusing on their dependence on basic study design characteristics. Results indicate that almost all pseudo-R2s are influenced to some extent by sample size, number of predictor variables, and number of categories of the dependent variable and its distribution asymmetry. Hence, an interpretation by goodness-of-fit benchmark values must explicitly consider these characteristics. The authors derive a set of goodness-of-fit benchmark values with respect to ranges of sample size and distribution of observations for this measure. This study raises awareness of fundamental differences in characteristics of pseudo-R2s and the need for greater precision in reporting these measures

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133