全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Optimization of acoustic emission parameters to discriminate failure modes in glass–epoxy composite laminates using pattern recognition

DOI: 10.1177/1475921718791321

Keywords: Glass-fiber-reinforced plastics,compression after impact,acoustic emission,failure mechanism,pattern recognition,wavelet analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, to overcome the challenges encountered during the discrimination of various failure modes in post impacted/indented glass-fiber-reinforced plastic, techniques like pattern recognition method and advanced signal processing were employed. The significant acoustic emission parameters such as amplitude, rise time, counts, energy, duration, and peak frequency that are acquired during compression after impact test are considered as inputs to cluster validity index and for various clustering techniques such as k-means, fuzzy C-means, and Kohonen’s self-organizing map. The acoustic emission count–frequency and amplitude–frequency have no overlapping, whereas other combinations of acoustic emission parameters result in overlapping with four clusters. The clustering techniques are validated by discrete wavelet transform of acoustic emission signals. The discrete wavelet transform was performed on the clustered acoustic emission signals to identify the percentage of energy and frequency content of each level which correlates the different failure modes. The results infer that k-means, fuzzy C-means clustering, and Kohonen’s self-organizing map are 94.5%, 97.1%, and 98.6% reliability, respectively, clearly suggesting Kohonen’s self-organizing map as the most appropriate technique for the classification of acoustic emission signature

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133