全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

High

DOI: 10.1177/2472630317743947

Keywords: electrokinetics,clinical automation,cell processing,nucleic acid processing and separation,cell lysis and electroporation,electroosmotic pump,conjugated and redox polymer

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present methods to fabricate high-capacity redox electrodes using thick membrane or fiber casting of conjugated polymer solutions. Unlike common solution casting or printing methods used in current organic electronics, the presented techniques enable production of PEDOT:PSS electrodes with high charge capacity and the capability to operate under applied voltages greater than 100 V without electrochemical overoxidation. The electrodes are shown integrated into several electrokinetic components commonly used in automated bioprocess or bioassay workflows, including electrophoretic DNA separation and extraction, cellular electroporation/lysis, and electroosmotic pumping. Unlike current metal electrodes used in these applications, the high-capacity polymer electrodes are shown to function without electrolysis of solvent (i.e., without production of excess H+, OH–, and H2O2 by-products). In addition, each component fabricated using the electrodes is shown to have superior capabilities compared with those fabricated with common metal electrodes. These innovations in electrokinetics include a low-voltage/high-pressure electroosmotic pump, and a “flow battery” (in which electrochemical discharge is used to generate electroosmotic flow in the absence of an applied potential). The novel electrodes (and electrokinetic demonstrations) enable new applications of organic electronics within the biology, health care, and pharmaceutical fields

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133