全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Structural health monitoring and fatigue damage estimation using vibration measurements and finite element model updating

DOI: 10.1177/1475921718790188

Keywords: Finite element model updating,strain and fatigue predictions,system identification,output-only measurements

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a computational framework is proposed for fatigue damage estimation in structural systems by integrating operational experimental measurements in a high-fidelity, large-scale finite element model. The proposed method is applied in a linear steel substructure of a lignite grinder assembly at a Public Power Corporation power plant. A finite element model of the steel base is developed and updated to match the dynamic characteristics measured in real operating conditions. This is achieved through coupled use of numerical and experimental methods for identifying, updating, and optimizing a high-fidelity finite element model. The full stress time histories of the complex mechanical assembly are estimated, at critical locations, by imposing operational vibration measurements from a limited number of sensors in the updated finite element model. Fatigue damage and remaining lifetime is subsequently estimated via commonly adopted engineering approaches, such as Palmgren–Miner damage rule, S–N curves, and rainflow cycle counting. Incorporation of a numerical model of the structure in the response estimation procedure permits stress estimation at unmeasured locations, thereby enabling the drawing of a complete and substantially dense fatigue map consistent with the vibration measurements. Fatigue predictions via the proposed framework are highly correlated to experimental fatigue results, proving the efficiency and applicability of the framework

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133