全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Natural Frequency Region – Fluid

DOI: 10.1177/0954409718788902

Keywords: Fluid–structure interaction,dynamic impact,rubber damping,rubber hydro-mounts,computational fluid dynamics,natural frequency region method

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an integrated procedure for dynamic impact predictions and an experimental verification of rubber–metal bonded components with fluid to be used as a potential application in rail vehicle suspensions. There are three steps involved in the procedure. First, a quasi-static analysis was performed to verify the elastic properties of the rubber material using hyperelastic models. Second, a dynamic impact evaluation on selected hydro-mounts without fluid was conducted using the Natural Frequency Region (NFR) approach. Finally, a coupled NFR (with Fluid-Structural-Interaction) approach, different from the usual viscoelastic methods, was initiated to predict the dynamic impact responses of these components with the fluid in time domain. All the analyses have been validated with experimental data. The first two stages have been briefly described and the third stage is detailed in this paper. It should be noted that a powerful computer with multi-central processing units is essential to obtain a reasonable result within an acceptable time frame. It took approximately 40?h wall-clock time to complete the analysis using a workstation with 10 central processing units. It has been suggested that the natural frequency region–fluid–structure interaction methodology is reliable and could be used at the design stage and for engineering applications

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133