全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Fusing unscented Kalman filter for performance monitoring and fault accommodation in gas turbine

DOI: 10.1177/0954410016682269

Keywords: Gas turbine engine,health monitoring,nonlinear estimation,data fusion,unscented Kalman filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Kalman filter is widely utilized for gas turbine health monitoring due to its simplicity, robustness, and suitability for real-time implementations. The most common Kalman filter for linear systems is linearized Kalman filter, and for nonlinear systems are extended Kalman filter and unscented Kalman filter. These algorithms have proven their capabilities to estimate gas turbine performance variations with a good accuracy, and the studies are done provided that all sensor measurements are available. In this paper, a nonlinear fusion approach with consistent diagnostic mechanism based on unscented Kalman filter is proposed, especially for gas turbine performance monitoring in the case of sensor failure. The architecture of fusion method comprises a set of local unscented Kalman filters and an information mixer. The local unscented Kalman filters are utilized to estimate health parameters of various component combinations, and the results are then transferred to the mixer for the integrated estimation of global health state in fusion structure. The consistent fault diagnosis and isolation logic is designed based on the fusion architecture and combined with the fusing unscented Kalman filter, called an improved fusing unscented Kalman filter. A systematic comparison of the generic linearized Kalman filter, extended Kalman filter, and unscented Kalman filter to their fusion filter kinds is presented for engine health estimation of gradual deterioration and abrupt fault. The studies show that the fusing unscented Kalman filter evidently outperforms the fusing linearized Kalman filter and fusing extended Kalman filter, while the fusing Kalman filters have slightly better estimation accuracy than the basic Kalman filters. In addition, the proposed methodology can reach the reliable performance monitoring with measurement uncertainty while the conventional Kalman filters collapse

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133