全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Numerical simulation of parafoil inflation via a Robin–Neumann transmission

DOI: 10.1177/0954410016688925

Keywords: Parafoil inflation,fluid–structure interaction,Robin–Neumann transmission,spring-transfinite interpolation dynamic mesh,aerodynamic performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a partitioned coupled iterative approach based on the Robin–Neumann transmission condition is proposed for the fluid–structure interaction simulation of the inflation process of a parafoil. The Reynold-averaged Navier–Stokes equations and the versatile finite element method are employed to solve the fluid flow field and the structural deformation, respectively. The generalized-α time integration scheme for the structure and the second order back Euler scheme for the fluid are incorporated in the Robin-Neumann method. A modified spring-transfinite interpolation hybrid method is exploited to detect the deformation of the grid and regenerate the grid for the fluid architecture. Both a two-dimensional case and a three-dimensional case are studied to examine the feasibility of the present approach. The simulation results reveal the evolution of the flow regime during the inflation process when the air pours into the parafoil. The whole inflation process can be concluded as two stages: the span-wise deployment and the longitudinal expansion. The numerical aerodynamic performance agrees well with that obtained by wind-tunnel experiment, suggesting the effectiveness of this method in handling such a highly nonlinear fluid–structure interaction in parachute inflation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133