全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

HybRecSys: Content

DOI: 10.1177/0165551518786678

Keywords: Collaborative filtering,content-based filtering,context,hybrid recommendation,location,venue

Full-Text   Cite this paper   Add to My Lib

Abstract:

The popularity of location-based social networks has prompted researchers to study recommendation systems for location-based services. When used separately, each existing venue recommendation system algorithm has its own drawbacks (e.g. cold start, data sparsity, scalability). Another issue is that critical information about context is not commonly used in venue recommendation systems. This article proposes a hybrid recommendation model that combines contextual information, user-based and item-based collaborative filtering and content-based filtering. For this purpose, we collected user visit histories, venue-related information (distance, category, popularity and price) and contextual information (weather, season, date and time of visits) related to individual user visits from Twitter, Foursquare and Weather Underground. Experimental evaluation of the proposed hybrid system (HybRecSys) using a real-world dataset shows better results than baseline approaches

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133