全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Topic

DOI: 10.1177/0165551518782831

Keywords: Expectation–maximisation algorithm,hierarchical Bayesian linear regression models,niche item recommendation,personalised recommendation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A vital research concern for a personalised recommender system is to target items in the long tail. Studies have shown that sales of the e-commerce platform possess a long-tail character, and niche items in the long tail are challenging to be involved in the recommendation list. Since niche items are defined by the niche market, which is a small market segment, traditional recommendation algorithms focused more on popular items promotion and they do not apply to the niche market. In this article, we aim to find the best users for each niche item and proposed a topic-based hierarchical Bayesian linear regression model for niche item recommendation. We first identify niche items and build niche item subgroups based on descriptive information of items. Moreover, we learn a hierarchical Bayesian linear regression model for each niche item subgroup. Finally, we predict the relevance between users and niche items to provide recommendations. We perform a series of validation experiments on Yahoo Movies dataset and compare the performance of our approach with a set of representative baseline recommender algorithms. The result demonstrates the superior performance of our recommendation approach for niche items

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133