全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Recognition algorithm for the disengagement of cement asphalt mortar based on dynamic responses of vehicles

DOI: 10.1177/0954409718794018

Keywords: CA mortar disengagement,vehicle–slab track coupled model,dynamic responses,PSO–SVM,recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Disengagement of emulsified cement asphalt mortar will increase the dynamic action between the vehicle and the track; as a consequence, the rate of cement asphalt mortar disengagement will increase further. This is a serious threat for the safe operation of high-speed railways and the service life of rail equipment. In this study, a vertical coupled model for the vehicle–China Railway Track System II-type slab track with cement asphalt disengagement was established. The cement asphalt mortar was divided into units in order to simulate the arbitrary length of disengagement. Under different conditions, the effects of the cement asphalt mortar disengagement on the dynamic characteristics of the coupled model were analyzed. The results show that when the length of disengagement exceeds 0.65?m under the condition of horizontal complete disengagement, the dynamic responses of the system increase much sharply than the condition of horizontal partly disengagement. Because of the difficulty in identifying defects in the track substructure, a novel method was proposed to rapidly identify the cement asphalt mortar disengagement based on the dynamic responses of the coupled system and particle swarm optimization–support vector machines. The feature vectors were extracted from the acceleration of the wheelset, which were used as training samples in support vector machines. The classification results show that the recognition algorithm based on the acceleration of the wheelset and support vector machines is effective. The location of the track plate with the cement asphalt mortar disengagement at lengths of 0.65?m, 1.3?m, and 1.95?m can be identified with an acceptable accuracy. The robustness of the proposed algorithm under different vehicle speeds, track spectrums, and signal–noise ratios was verified. Recognition of defects in the track substructure using sensors mounted on in-service vehicles has the potential to provide a valuable tool for ensuring the safe operation of railways and for developing a maintenance plan

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133