全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Similarity versus relatedness: A novel approach in extractive Persian document summarisation

DOI: 10.1177/0165551517693537

Keywords: Clustering,coherency,extractive summarisation,Persian document summarisation,relatedness,semantic relations,similarity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Automatic text summarisation is the process of creating a summary from one or more documents by eliminating the details and preserving the worthwhile information. This article presents a single/multi-document summariser using a novel clustering method for creating summaries. First, a feature selection phase is employed. Then, FarsNet, the Persian WordNet, is utilised to extract the semantic information of words. Therefore, the input sentences are categorised into three main clusters: similarity, relatedness and coherency. Each similarity cluster contains similar sentences to its core, while each relatedness cluster contains sentences that are related (but not similar) to its core. The coherency clusters show the sentences that should be kept together to preserve the coherency of the summary. Finally, the centroid of each similarity cluster having the most feature score is added to an empty summary. The summary is enlarged by including related sentences from relatedness clusters and excluding similar sentences to its content iteratively. Coherency clusters are applied to the created summary in the last step. The proposed method has been compared with three known existing text summarisation systems and techniques for the Persian language: FarsiSum, Parsumist and Ijaz. Our proposed method leads to improvement in experimental results on different measurements including precision, recall, F-measure, ROUGE-N and ROUGE-L

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133