全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Augmented Lagrangian teaching–learning

DOI: 10.1177/0954410017711725

Keywords: Structural design optimization,augmented Lagrangian method,teaching–learning-based optimization,constrained optimization,truss structures,nontruss structures

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stochastic optimization methods have been widely employed to find solutions to structural design optimization problems in the past two decades, especially for truss structures. The primary aim of this study is to introduce a design optimization method combining an augmented Lagrangian function and teaching–learning-based optimization for truss and nontruss structural design optimization. The augmented Lagrangian function serves as a constraint-handling tool in the proposed method and converts a constrained optimization problem into an unconstrained one. On the other hand, teaching–learning-based optimization is employed to resolve the transformed, unconstrained optimization problems. Since the proper values of the Lagrangian multipliers and penalty factors are unknown in advance, the proposed method is implemented in an iterative way to avoid the issue of selecting them, i.e. the Lagrangian multipliers and penalty factors are automatically updated according to the violation level of all constraints. To examine the performance of the proposed method, it is applied on a group of benchmark truss optimization problems and a group of nontruss optimization problems of aircraft wing structures. The computational results obtained by the proposed method are compared to the results produced by both other version of teaching–learning-based optimization and stochastic optimization methods

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133