全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Bearing fault diagnosis method based on the generalized S transform time–frequency spectrum de

DOI: 10.1177/0954406218782285

Keywords: Bearing,fault diagnosis,generalized S transform,singular value decomposition,de-noising

Full-Text   Cite this paper   Add to My Lib

Abstract:

In view of the fact that the random noise interferes with the characteristic extraction of a rolling bearing fault signal, a new method of fault feature extraction is proposed based on the combination of the generalized S transform and singular value decomposition (SVD). Firstly, the 2D time–frequency spectrum bearing fault signal is obtained by applying the generalized S transform, and the time–frequency spectrum matrix is used as the objective matrix of SVD to solve the singular values. Then the K-means clustering algorithm is used to classify the singular value sequence, and the singular values for reconstruction are determined. Finally, the de-noised matrix is carried out the generalized S inversion transform to get the de-noised fault signal, and the power spectrum is calculated to finish the fault diagnosis. By analyzing the simulated signal and the actual bearing fault data, results show that the proposed method can effectively identify typical faults of rolling bearings and improve the diagnosis effect of rolling bearing faults. And it provides a new way to realize the fault diagnosis of rolling bearings under noise

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133