Coral Diversity and the Severity of Disease Outbreaks: A Cross-Regional Comparison of Acropora White Syndrome in a Species-Rich Region (American Samoa) with a Species-Poor Region (Northwestern Hawaiian Islands)
The dynamics of the coral disease, Acropora white syndrome (AWS), was directly compared on reefs in the species-poor region of the Northwestern Hawaiian Islands (NWHI) and the species-rich region of American Samoa (AS) with results suggesting that biodiversity, which can affect the abundance of susceptible hosts, is important in influencing the impacts of coral disease outbreaks. The diversity-disease hypothesis predicts that decreased host species diversity should result in increased disease severity of specialist pathogens. We found that AWS was more prevalent and had a higher incidence within the NWHI as compared to AS. Individual Acropora colonies affected by AWS showed high mortality in both regions, but case fatality rate and disease severity was higher in the NWHI. The site within the NWHI had a monospecific stand of A. cytherea; a species that is highly susceptible to AWS. Once AWS entered the site, it spread easily amongst the abundant susceptible hosts. The site within AS contained numerous Acropora species, which differed in their apparent susceptibility to infection and disease severity, which in turn reduced disease spread. Manipulative studies showed AWS was transmissible through direct contact in three Acropora species. These results will help managers predict and respond to disease outbreaks. 1. Introduction Ecosystem resilience can be defined as the capacity of a system to absorb disturbance and reorganize so as to retain the basic ecosystem services [1, 2]. Regime shifts in ecosystems are increasingly common as a consequence of human activities that erode resilience. This is especially apparent for coral reefs worldwide, which are in decline primarily due to overharvesting, pollution, disease, and climate change [3–6]. Active and adaptive coral reef management is critical if we are to maintain these ecosystems, which requires an understanding of those processes that support coral reef resilience. A critical component underlying ecosystem resilience is the diversity of functional groups and their response to disturbance [1, 2]. A functional group is a collection of species that perform a similar function, irrespective of their taxonomic affinities [6, 7]. For example, herbivores such as reef fish and sea urchins, are an important functional group, which help to maintain the balance between corals and algae. Coral reefs that have high species diversity would have a higher capacity to absorb a disturbance since the loss of any one species could potentially be compensated for by the actions of others (functional redundancy). In the
References
[1]
T. Elmqvist, C. Folke, M. Nystrom, et al., “Response diversity, ecosystem change and resilience,” Frontiers in Ecology and the Environment, vol. 1, no. 9, pp. 488–494, 2003.
[2]
C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C. S. Holling, “Regime shifts, resilience, and biodiversity in ecosystem management,” Annual Review of Ecology, Evolution, and Systematics, vol. 35, pp. 557–581, 2004.
[3]
C. D. Harvell, K. Kim, and K. Kim, “Emerging marine diseases-climate links and anthropogenic factors,” Science, vol. 285, no. 5433, pp. 1505–1510, 1999.
[4]
C. D. Harvell, E. Jordan-Dahlgren, S. Merkel, et al., “Coral disease, environmental drivers, and the balance between coral and microbial associates,” Oceanography, vol. 20, no. 1, pp. 58–81, 2007.
[5]
T. P. Hughes, A. H. Baird, and A. H. Baird, “Climate change, human impacts, and the resilience of coral reefs,” Science, vol. 301, no. 5635, pp. 929–933, 2003.
[6]
D. R. Bellwood, T. P. Hughes, C. Folke, and M. Nystr?m, “Confronting the coral reef crisis,” Nature, vol. 429, no. 6994, pp. 827–833, 2004.
[7]
R. S. Steneck and M. N. Dethier, “A functional group approach to the structure of algal-dominated communities,” Oikos, vol. 69, no. 3, pp. 476–498, 1994.
[8]
J. C. Ogden, R. A. Brown, and N. Salesky, “Grazing by the echinoid Diadema antillarum Philippi: formation of halos around West Indian patch reefs,” Science, vol. 182, no. 4113, pp. 715–717, 1973.
[9]
M. E. Hay, “Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical?” Ecology, vol. 65, no. 2, pp. 446–454, 1984.
[10]
T. P. Hughes, “Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef,” Science, vol. 265, no. 5178, pp. 1547–1551, 1994.
[11]
H. A. Lessios, D. R. Robertson, and J. D. Cubit, “Spread of Diadema mass mortality through the Caribbean,” Science, vol. 226, no. 4672, pp. 335–337, 1984.
[12]
H. A. Lessios, “Mass mortality of Diadema antillarum in the Caribbean: what have we learned?” Annual Review of Ecology and Systematics9, vol. 19, pp. 371–393, 1988.
[13]
W. Gladfelter, “White-band disease in Acropora palmata: implications for the structure and growth of shallow reefs,” Bulletin of Marine Science, vol. 32, pp. 639–643, 1982.
[14]
J. W. Porter, P. Dustan, and P. Dustan, “Patterns of spread of coral disease in the Florida Keys,” Hydrobiologia, vol. 460, pp. 1–24, 2001.
[15]
D. L. Santavy, E. Mueller, E. C. Peters, L. MacLaughlin, J. W. Porter, K. L. Patterson, and J. Campbell, “Quantitative assessment of coral diseases in the Florida Keys: strategy and methodology,” Hydrobiologia, vol. 460, pp. 39–52, 2001.
[16]
K. L. Patterson, J. W. Porter, and J. W. Porter, “The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8725–8730, 2002.
[17]
K. P. Sutherland, J. W. Porter, and C. Torres, “Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals,” Marine Ecology Progress Series, vol. 266, pp. 273–302, 2004.
[18]
L. J. H. Raymundo, C. D. Harvell, and T. L. Reynolds, “Porites ulcerative white spot disease: description, prevalence, and host range of a new coral disease affecting Indo-Pacific reefs,” Diseases of Aquatic Organisms, vol. 56, no. 2, pp. 95–104, 2003.
[19]
B. Willis, C. Page, and E. Dinsdale, “Coral disease on the great barrier reefs,” in Coral Health and Disease, E. Rosenberg and Y. Loya, Eds., pp. 69–104, Springer, Berlin, Germany, 2004.
[20]
G. S. Aeby, “Outbreak of coral disease in the Northwestern Hawaiian Islands,” Coral Reefs, vol. 24, no. 3, p. 481, 2005.
[21]
G. J. Williams, G. S. Aeby, and S. K. Davy, “Coral disease at Palmyra Atoll, a remote reef system in the Central Pacific,” Coral Reefs, vol. 27, no. 1, p. 207, 2008.
[22]
G. Aeby, T. Work, D. Fenner, and E. di Donato, “oral and crustose coralline algae disease on the reefs of American Samoa,” in Proceedings of the 11th International Coral Reef Symposium, pp. 197–201, 2009.
[23]
R. L. Myers and L. J. Raymundo, “Coral disease in Micronesian reefs: a link between disease prevalence and host abundance,” Diseases of Aquatic Organisms, vol. 87, no. 1-2, pp. 97–104, 2009.
[24]
M. Sussman, B. L. Willis, S. Victor, and D. G. Bourne, “Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific,” PLoS ONE, vol. 3, no. 6, Article ID e2393, 2008.
[25]
B. Vargas-ángel, “Coral health and disease assessment in the U.S. pacific remote ISLAND areas,” Bulletin of Marine Science, vol. 84, no. 2, pp. 211–227, 2009.
[26]
E. Rosenberg and Y. Ben-Haim, “Microbial diseases of corals and global warming,” Environmental Microbiology, vol. 4, no. 6, pp. 318–326, 2002.
[27]
S. Sokolow, “Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence,” Diseases of Aquatic Organisms, vol. 87, no. 1-2, pp. 5–18, 2009.
[28]
M. E. Mouchka, I. Hewson, and C. D. Harvell, “Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts,” Integrative and Comparative Biology, vol. 50, no. 4, pp. 662–674, 2010.
[29]
R. M. Anderson and R. M. May, “Population biology of infectious diseases: part I,” Nature, vol. 280, no. 5721, pp. 361–367, 1979.
[30]
J. Antonovics, Y. Iwasa, and M. P. Hassell, “A generalized model of parasitoid, venereal, and vector-based transmission processes,” American Naturalist, vol. 145, no. 5, pp. 661–675, 1995.
[31]
C. E. Mitchell, D. Tilman, and J. V. Groth, “Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease,” Ecology, vol. 83, no. 6, pp. 1713–1726, 2002.
[32]
C. Elton, The Ecology of Invasions by Animals and Plants, John Wiley & Sons, New York, NY, USA, 1958.
[33]
J. van der Plank, Plant Diseases: Epidemics and Control, Academic Press, New York, NY, USA, 1963.
[34]
M. Wolfe, “The current status and prospects of multiline cultivars and variety mixtures for disease resistance,” Annual Review of Phytopathology, vol. 23, pp. 251–273, 1985.
[35]
P. J. Burton, A. C. Balisky, L. P. Coward, S. G. Cumming, and D. D. Kneeshaw, “The value of managing for biodiversity,” Forestry Chronicle, vol. 68, no. 2, pp. 225–237, 1992.
[36]
G. S. Gilbert and S. P. Hubbell, “Plant diseases and the conservation of tropical forests,” BioScience, vol. 46, no. 2, pp. 98–106, 1996.
[37]
M. Bourdreau and C. Mundt, “Ecological approaches to disease control,” in Environmentally Safe Approaches to Crop Disease Control, N. Rechcigl and J. Rechcigl, Eds., pp. 33–62, CRC Press, Boca Raton, Fla, USA, 1997.
[38]
M. Finckh and M. Wolfe, “The use of biodiversity to restrict plant diseases and some consequences for farmers and society,” in Ecology in Agriculture, J. Jackson, Ed., pp. 203–237, Academic Press, San Diego, Calif, USA, 1997.
[39]
K. A. Garrett and C. C. Mundt, “Epidemiology in mixed host populations,” Phytopathology, vol. 89, no. 11, pp. 984–990, 1999.
[40]
R. S. Ostfeld and F. Keesing, “Biodiversity and disease risk: the case of Lyme disease,” Conservation Biology, vol. 14, no. 3, pp. 722–728, 2000.
[41]
K. LoGiudice, R. S. Ostfeld, K. A. Schmidt, and F. Keesing, “The ecology of infectious disease: effects of host diversity and community composition on lyme disease risk,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 567–571, 2003.
[42]
J. P. Swaddle and S. E. Calos, “Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect,” PLoS ONE, vol. 3, no. 6, Article ID e2488, 2008.
[43]
F. Altermatt and D. Ebert, “Genetic diversity of Daphnia magna populations enhances resistance to parasites,” Ecology Letters, vol. 11, no. 9, pp. 918–928, 2008.
[44]
J. R. Ward, K. L. Rypien, and K. L. Rypien, “Coral diversity and disease in Mexico,” Diseases of Aquatic Organisms, vol. 69, no. 1, pp. 23–31, 2006.
[45]
F. Stehli and J. W. Wells, “Diversity and age patterns in hermatypic coral,” Systematic Biology, vol. 20, pp. 115–126, 1971.
[46]
J. E. N. Veron, Corals in Space and Time: The Biogeography and Evolution of the Scleractinia, UNSW Press, Sydney, Australia, 1995.
[47]
D. R. Bellwood and T. P. Hughes, “Regional-scale assembly rules and biodiversity of coral reefs,” Science, vol. 292, no. 5521, pp. 1532–1534, 2001.
[48]
J. E. N. Veron, Corals of the World, AIMS, Townsville, Australia, 2000.
[49]
A. Friedlander, G. Aeby, S. Balwani, et al., “The state of coral reef ecosystems of the northwestern Hawaiian Islands,” in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, J. Waddell, Ed., pp. 263–306, NOAA/NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Team, Silver Spring, Md, USA, 2008.
[50]
G. S. Aeby, M. Ross, G. J. Williams, T. D. Lewis, and T. M. Work, “Disease dynamics of Montipora white syndrome within Kaneohe Bay, Oahu, Hawaii: distribution, seasonality, virulence, and transmissibility,” Diseases of Aquatic Organisms, vol. 91, no. 1, pp. 1–8, 2010.
[51]
D. Fenner, M. Speicher, S. Gulick, et al., “The state of coral reef ecosystems American Samoa,” in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, J. Waddell, Ed., pp. 307–351, NOAA/NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Team, Silver Spring, Md, USA, 2008.
[52]
NOAA (National Oceanic and Atmospheric Administration), Atlas of the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands, NOAA, Silver Spring, Md, USA, 2003.
[53]
P. Craig, Natural History Guide to American Samoa, National Park of American Samoa, Pago Pago, American Samoa, USA, 2002.
[54]
J. E. Maragos, D. C. Potts, G. Aeby, D. Gulko, J. Kenyon, D. Siciliano, and D. VanRavenswaay, “The 2000–2002 rapid ecological assessment of corals in the Northwestern Hawaiian Islands. Part I. Species and distribution,” Pacific Science, vol. 58, no. 2, pp. 211–230, 2004.
[55]
J. C. Kenyon, P. S. Vroom, K. N. Page, M. J. Dunlap, C. B. Wilkinson, and G. S. Aeby, “Community structure of hermatypic corals at French Frigate Shoals, Northwestern Hawaiian Islands: capacity for resistance and resilience to selective stressors,” Pacific Science, vol. 60, no. 2, pp. 153–175, 2006.
[56]
J. C. Kenyon, C. B. Wilkinson, M. J. Dunlap, G. S. Aeby, and C. Kryss, “Community structure of hermatypic corals at Laysan and Lisianski/Neva Shoal, Northwestern Hawaiian Islands: a new layer of scientific exploration,” Atoll Research Bulletin, no. 550, pp. 1–28, 2007.
[57]
J. C. Kenyon, C. B. Wilkinson, and G. S. Aeby, “Community structure of hermatypic corals at maro reef in the northwestern hawaiian islands: a unique open atoll,” Atoll Research Bulletin, no. 558, pp. 1–24, 2008.
[58]
G. S. Aeby, “Baseline levels of coral disease in the Northwestern Hawaiian Islands,” Atoll Research Bulletin, no. 543, pp. 471–488, 2006.
[59]
J. F. Bruno, E. R. Selig, and E. R. Selig, “Thermal stress and coral cover as drivers of coral disease outbreaks,” PLoS ONE, vol. 5, no. 6, pp. 1–8, 2007.
[60]
J. Haapkyl?, R. K. F. Unsworth, A. S. Seymour, M. T. Jessica, M. Flavell, B. L. Willis, and D. J. Smith, “Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi, Indonesia,” Diseases of Aquatic Organisms, vol. 87, no. 1-2, pp. 105–115, 2009.
[61]
M. Friend and J. C. Franson, “Field manual of wildlife diseases: general field procedures and diseases of birds,” Information and Technology Report 1999-01, USGS, 1999.
[62]
T. M. Work, J. L. Klavitter, M. H. Reynolds, and D. Blehert, “Avian botulism: a case study in translocated endangered laysan ducks (Anas laysanensis) on midway atoll,” Journal of Wildlife Diseases, vol. 46, no. 2, pp. 499–506, 2010.
[63]
T. M. Work, L. L. Richardson, T. L. Reynolds, and B. L. Willis, “Biomedical and veterinary science can increase our understanding of coral disease,” Journal of Experimental Marine Biology and Ecology, vol. 362, no. 2, pp. 63–70, 2008.
[64]
H. Hudson, “First aid for massive corals infected with black band disease, Phormidium corallyticum: an underwater aspirator and post-treatment sealant to curtail re-infection,” in Diving for Science in the 21st Century: Proceedings of the 20th Annual Scientific Diving Symposium, Hallock and French, Eds., American Academy of Underwater Sciences, St Pete Beach, Fla, USA, 2000.
[65]
S. J. Dalton, S. Godwin, S. D. A. Smith, and L. Pereg, “Australian subtropical white syndrome: a transmissible, temperature-dependent coral disease,” Marine and Freshwater Research, vol. 61, no. 3, pp. 342–350, 2010.