全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Efficiency of nanoparticle reinforcement using finite element analysis of titanium alloy mandible plate

DOI: 10.1177/0954411918823801

Keywords: Finite element analysis,nanoparticles,von Mises stress,mandible,titanium alloy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanoparticles in the form nanotubes and nanoplatelets have been compared for von Mises stresses by using them as low-composition reinforcements in titanium alloy–based mandible plate for different compositions and orientations. A finite element model has been designed to reconstruct a fractured human mandible with a titanium alloy mandible plate. A 500?N compressive force was applied on the mandible, and stress distribution across the plate sections was analysed for aligned two-dimensional random and three-dimensional random orientations for both tubes and platelets. Carbon material as graphene has been used for tube and platelet in the form of nanotubes and nanoplatelets, respectively. Using properties of graphene as the filler in titanium alloy plate, for both nanoplatelets and nanotubes, the stresses reduced between 5% and 25% for nanoplatelets and nanotubes graphene–titanium composite plates in comparison to non-reinforced plates, at critically stressed sections. Nanotubes exhibited stress reduction of nearly 23.4% for aligned configurations, while nanoplatelets exhibited stress reduction up to 21.2% for two-dimensional and three-dinemsional random configurations in comparison to non-reinforced titanium plates. Hence, it has been suggested that nanotubes exhibited superior mechanical reinforcement potential beyond that of aligned nanoplatelets, while nanoplatelets provided enhanced mechanical reinforcements for random configurations. Therefore, for biomedical implant applications nanocomposite materials can be designed with the same dimensional form but with lower compositions of filler materials by simply manipulating the appropriate orientations

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133