全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

A Comparison Between Subjective and Objective Methods of Predicting Health Care Expenses to Support Consumers’ Health Insurance Plan Choice

DOI: 10.1177/2381468318781093

Keywords: health care utilization,Affordable Care Act (ACA),health insurance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Numerous electronic tools help consumers select health insurance plans based on their estimated health care utilization. However, the best way to personalize these tools is unknown. The purpose of this study was to compare two common methods of personalizing health insurance plan displays: 1) quantitative healthcare utilization predictions using nationally representative Medical Expenditure Panel Survey (MEPS) data and 2) subjective-health status predictions. We also explored their relations to self-reported health care utilization. Methods. Secondary data analysis was conducted with responses from 327 adults under age 65 considering health insurance enrollment in the Affordable Care Act (ACA) marketplace. Participants were asked to report their subjective health, health conditions, and demographic information. MEPS data were used to estimate predicted annual expenditures based on age, gender, and reported health conditions. Self-reported health care utilization was obtained for 120 participants at a 1-year follow-up. Results. MEPS-based predictions and subjective-health status were related (P < 0.0001). However, MEPS-predicted ranges within subjective-health categories were large. Subjective health was a less reliable predictor of expenses among older adults (age × subjective health, P = 0.04). Neither significantly related to subsequent self-reported health care utilization (P = 0.18, P = 0.92, respectively). Conclusions. Because MEPS data are nationally representative, they may approximate utilization better than subjective health, particularly among older adults. However, approximating health care utilization is difficult, especially among newly insured. Findings have implications for health insurance decision support tools that personalize plan displays based on cost estimates

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133