全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigations on the Plastic Instability in an HCP Mg-Li Alloy

DOI: 10.1155/2012/674573

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plastic instability is reported in hexagonal close-packed (HCP) LA41 magnesium alloy during tensile tests. Serration amplitude associated with plastic instability is measured to increase with increasing strain and decrease with increasing strain rate. The model of dynamic strain aging (DSA) is proposed to be the controlling mechanism. Moreover, it is reported that annealing could reduce the flow instability, which has potential practical applications. 1. Introduction Plastic instability associated with the production of Portevin-Le Chatelier (PLC) bands, which is also know as serrated flow or jerky flow, is a topic of current theoretical and engineering interest. Lots of studies in this area are on aluminum alloys; however, due to soaring research on magnesium alloys, similar results have been reported in Mg-Ag [1], Mg-Gd [2], Mg-Y-Nd [3], Mg-Nd [4], and Mg-Al-Zn [5, 6] alloys, respectively. Microscopically, plastic instability was believed to result from intensive interactions between mobile dislocations and solutes atoms. Cottrell [7] assumed that solute atoms had sufficient mobility to move with mobile dislocations and serrated flow was caused by the drag effect of solute atoms. However, other finding revealed that solute atoms were not expected to have such mobility [8]. Later investigations proposed that the dynamic strain aging (DSA) process during deformation might be the major controlling mechanism [9–14]. Recently, Picu [15] has suggested a new perspective by considering the effect of solute clusters, which are formed on forest dislocations, on the strength of dislocation junctions to shed more light on this long-lasting yet intriguing issue. Macroscopic features, such as spatiotemporal localization of plastic deformation and propagation of deformation bands, were also investigated systematically. Experimentally, Chmelík et al. [16] monitored in situ collective dislocation motion by acoustic emission (AE) and laser extensometry techniques. They concluded that nucleation and propagation of PLC bands were dominated by different dislocation processes. Shabadi et al. [17] and Zhang et al. [18] examined dynamics deformation bands by more sophisticated laser speckle technique. Dablij and Zeghloul [19] characterized the PLC effect by measuring deformation band strains and band propagation velocities. These macroscopic features are also explained theoretically. Particularly, Lebyodkin et al. [20] simulated localized deformation bands patterns by a discrete model based on statistical behavior of stress drops, while Ananthakrishna’s extended model [21]

References

[1]  M. Chaturvedi, D. J. Lloyd, and K. Tangri, “Serrated yielding in magnesium-10 wt.-% Silver alloy,” Metal Science, vol. 6, no. 1, pp. 16–19, 1972.
[2]  X. Y. Fang, D. Q. Yi, and J. F. Nie, “The serrated flow behavior of Mg-Gd(-Mn-Sc) alloys,” Metallurgical and Materials Transactions A, vol. 40, no. 11, pp. 2761–2771, 2009.
[3]  S. M. Zhu and J. F. Nie, “Serrated flow and tensile properties of a Mg-Y-Nd alloy,” Scripta Materialia, vol. 50, no. 1, pp. 51–55, 2004.
[4]  V. Gartnerova, Z. Trojanova, A. Jager, and P. Palcek, “Deformation behaviour of Mg-0.7 wt.% Nd alloy,” Journal of Alloys and Compounds, vol. 378, no. 1-2, pp. 180–183, 2004.
[5]  C. H. Cáceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy,” Materials Science and Engineering A, vol. 325, no. 1-2, pp. 344–355, 2002.
[6]  C. Corby, C. H. Cáceres, and P. Luká?, “Serrated flow in magnesium alloy AZ91,” Materials Science and Engineering A, vol. 387–389, no. 1-2, pp. 22–24, 2004.
[7]  A. H. Cottrell, “A note on the Portevin-Le Chatelier effect,” Philosophical Magazine, vol. 44, no. 355, pp. 829–832, 1953.
[8]  P. G. McCormigk, “A model for the Portevin-Le Chatelier effect in substitutional alloys,” Acta Metallurgica, vol. 20, no. 3, pp. 351–354, 1972.
[9]  A. van den Beukel, “Theory of the effect of dynamic strain aging on mechanical properties,” Physica Status Solidi A, vol. 30, no. 1, pp. 197–206, 1975.
[10]  A. W. Sleeswyk, “Slow strain-hardening of ingot iron,” Acta Metallurgica, vol. 6, no. 9, pp. 598–603, 1958.
[11]  R. A. Mulford and U. F. Kocks, “New observations on the mechanisms of dynamic strain aging and of jerky flow,” Acta Metallurgica, vol. 27, no. 7, pp. 1125–1134, 1979.
[12]  A. Van Den Beukel, “On the mechanism of serrated yielding and dynamic strain ageing,” Acta Metallurgica, vol. 28, no. 7, pp. 965–969, 1980.
[13]  P. Penning, “Mathematics of the portevin-le chatelier effect,” Acta Metallurgica, vol. 20, no. 10, pp. 1169–1175, 1972.
[14]  J. M. Robinson and M. P. Shaw, “Microstructural and mechanical influences on dynamic strain aging phenomena,” International Materials Reviews, vol. 39, pp. 113–122, 1994.
[15]  R. C. Picu, “A mechanism for the negative strain-rate sensitivity of dilute solid solutions,” Acta Materialia, vol. 52, no. 12, pp. 3447–3458, 2004.
[16]  F. Chmelík, A. Ziegenbein, H. Neuh?user, and P. Luká?, “Investigating the Portevin-Le Chaǎtelier effect by the acoustic emission and laser extensometry techniques,” Materials Science and Engineering A, vol. 324, no. 1-2, pp. 200–207, 2002.
[17]  R. Shabadi, S. Kumar, H. J. Roven, and E. S. Dwarakadasa, “Characterisation of PLC band parameters using laser speckle technique,” Materials Science and Engineering A, vol. 364, no. 1-2, pp. 140–150, 2004.
[18]  Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, and X. Wu, “On the propagation and pulsation of Portevin-Le Chatelier deformation bands: an experimental study with digital speckle pattern metrology,” International Journal of Plasticity, vol. 21, no. 11, pp. 2150–2173, 2005.
[19]  M. Dablij and A. Zeghloul, “Portevin-Le Chatelier plastic instabilities: characteristics of deformation bands,” Materials Science and Engineering A, vol. 237, no. 1, pp. 1–5, 1997.
[20]  M. Lebyodkin, Y. Brechet, Y. Estrin, and L. Kubin, “Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect,” Acta Materialia, vol. 44, no. 11, pp. 4531–4541, 1996.
[21]  G. Ananthakrishna, “Spatio-temporal features of the Portevin-Le Chatelier effect,” Materials Science and Engineering A, vol. 400-401, no. 1-2, pp. 210–213, 2005.
[22]  M. Lebyodkin, L. Dunin-Barkovskii, Y. Bréchet, L. Kubin, and Y. Estrin, “Kinetics and statistics of jerky flow: experiments and computer simulations,” Materials Science and Engineering A, vol. 234–236, pp. 115–118, 1997.
[23]  C. P. Ling and P. G. McCormick, “The effect of temperature on strain rate sensitivity in an AlMgSi alloy,” Acta Metallurgica Et Materialia, vol. 41, no. 11, pp. 3127–3131, 1993.
[24]  S. Kumar, “Inverse behaviour of the onset strain of serrated flow,” Scripta Metallurgica et Materiala, vol. 33, no. 1, pp. 81–86, 1995.
[25]  M. Abbadi, P. H?hner, and A. Zeghloul, “On the characteristics of Portevin-Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing,” Materials Science and Engineering A, vol. 337, no. 1-2, pp. 194–201, 2002.
[26]  I. S. Kim and M. C. Chaturvedi, “Serrated flow in Al-5 wt.% Mg alloy,” Materials Science and Engineering, vol. 37, no. 2, pp. 165–172, 1979.
[27]  D. W. Levinson and D. J. McPherson, “Phase relations in magnesium-lithium-aluminum alloys,” Transactions of the American Society for Metals, vol. 48, pp. 689–705, 1956.
[28]  C. Wang, Y. Xu, and E. Han, “PLC effect and its explanation of LA41 magnesium alloys,” Acta Metallurgica Sinica, vol. 42, no. 2, pp. 191–194, 2006.
[29]  W. Gasior and Z. Moser, “Chemical diffusion coefficients in solid al-rich aluminium-magnesium alloys,” Archives of Metallurgy, vol. 46, no. 4, pp. 455–463, 2001.
[30]  W. Gasior and Z. Moser, Archives of Metallurgy, vol. 46, p. 269, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133