全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

How Knowledge Emerges From Artificial Intelligence Algorithm and Data Visualization for Diabetes Management

DOI: 10.1177/1932296819847739

Keywords: artificial intelligence,blood glucose,demonstrator,diabetes,machine learning,self-monitoring,shared decision making

Full-Text   Cite this paper   Add to My Lib

Abstract:

Self-monitoring blood glucose (SMBG) is facilitated by application available to analyze these data. They are mainly based on descriptive statistical analyses. In this study, we are proposing a method inspired by artificial intelligence algorithm for displaying glycemic data in an intelligible way with high-level information that is compatible with the short duration allocated to medical visits. We propose a display method based on a numerical glycemic data conversion using a qualitative color scale that exhibits the patient’s overall glycemic state. Moreover, a machine learning algorithm inputs these displays to exhibit recurrent glycemic pattern over configurable extended time period. A demonstrator of our method, output as a glycemic map, could be used by the physician during quarterly patient consultations. We have tested this methodology retrospectively on a database in order to observe the behavior of our algorithm. In some data files we were able to highlight some of the glycemic patterns characteristics that remain invisible on the tabular representations or through the use of descriptive statistic. In a next step the interpretation will have to be done by physicians to confirm they underlie knowledge. Our approach with artificial intelligence algorithm paired up with graphical color display allow a large database fast analysis to provide insights on diabetes knowledge. The next steps are first to set up a clinical trial to validate this methodology with dedicated patients and physicians then we will adapt our methodology for the huge data sets generated by continuous glycemic measurement (CGM) devices

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133