全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths

DOI: 10.1177/0748730417746458

Keywords: larval clocks,circadian oscillator,gene expression,Heliothis virescens,Danaus plexippus,period,timeless

Full-Text   Cite this paper   Add to My Lib

Abstract:

Circadian behavior is widely observed in insects; however, the mechanisms that drive its evolution remain a black box. While circadian activity rhythms are well characterized in adults within the order Lepidoptera (i.e., most butterfly species are day active, while most moths are night active), much less is known about daily activity and clock gene expression in the larval stage. Additionally, direct comparison of clock gene expression between day-active and night-active species reared together has not been quantified. Our study characterized the daily rhythms of caterpillar feeding and activity in addition to the gene expression of 2 central circadian clock genes, period (per) and timeless (tim), in larvae and adults of the day-active butterfly Danaus plexippus and the night-active moth Heliothis virescens. We found that neither Danaus nor Heliothis caterpillars are strictly diurnal or nocturnal like their adult counterparts; however, we found that slight rhythms in feeding and activity can arise in response to external forces, such as temperature and host plant. Expression levels differed between genes, between butterfly larvae and adults, and between butterfly and moth species, even though expression levels of both per and tim oscillated with a similar phase over 24 hours across all treatments. Our study, the first of its kind to investigate circadian timekeeper gene expression in 2 life stages and 2 species, highlights interesting differences in core clock gene expression patterns that could have potential downstream effects on circadian rhythms

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133