全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

On the arithmetic intensity of high

DOI: 10.1177/1094342017691876

Keywords: Arithmetic intensity,high-order finite-volume methods,hyperbolic systems of conservation laws,processor–memory performance gap,algorithmic balance

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has been conjectured that higher-order discretizations for partial differential equations will have advantages over the lower-order counterparts commonly used today. The reasoning is that the increase in arithmetic operations will be more than offset by the reduction in data transfers and the increase in concurrent floating-point units. To evaluate this conjecture, the arithmetic intensity of a class of high-order finite-volume discretizations for hyperbolic systems of conservation laws is theoretically analyzed for spatial discretizations from orders three through eight in arbitrary dimensions. Three cache models are considered: the limiting cases of no cache and infinite cache as well as a finite-sized cache model. Models are validated experimentally by measuring floating-point operations and data transfers on an IBM Blue Gene/Q node. Theory and experiments demonstrate that high-order finite-volume methods will be able to provide increases in arithmetic intensity that will be necessary to make better utilization of on-node floating-point capability

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133