Sound-ecosystem-based management of coral reefs is largely based on indicators of reef health state. Currently there are various ecological parameters that serve as reef state indices; however, their practical implications are under debate. In the present study we examine an alternative parameter, the deterioration index (DI), which does not purport to replace the traditional indices but can provide a reliable, stand-alone indication of reef state. Patterns of cytological indices, which are considered as reliable indicators of environmental stressors, have been compared to ten selected reef community indices. The DI showed the highest correlations among community indices to the cytological indices in artificial reefs and high correlation in natural reefs as well. Our results suggest that in cases of lacking adequate monitoring abilities where a full set of community indices cannot be obtained, the DI can serve in many cases as the preferred, stand-alone indicator of coral reef state. 1. Introduction Coral reefs are in serious decline worldwide [1, 2], and concerns for the future existence of the reefs have driven governments, international organizations, and NGOs to seek ways to prevent or mitigate the degradation of these essential ecosystems. A crucial element of coral reef protection and management is efficient and reliable monitoring; a critical tool for identification of reef deterioration, its causes, and countermeasures. At present, there are various monitoring methods that employ diverse indices of coral reef state (e.g., live cover, species diversity, key species abundances (for more details, see [3, 4])). However, many coral reef ecologists have raised doubts about the usefulness and reliability of the commonly used community parameters (in expressing the actual state of reefs (e.g., [5–9])). These doubts are derived from two major factors: first, the high complexity and natural variability of reef communities and, second, the strong dependency of acquiring reliable reef-state indications on long-term, expensive, and complicated monitoring, which includes assessment of diverse community variables (e.g., [10]). It should be stressed that most of the common indices, if examined repeatedly at the same site over several years, indeed provide reliable indications of trends of the coral community state (e.g., [10–13]). However, given the above noted limitations, long-term monitoring programs that include a wide range of community indices are rare. On the other hand, none of the traditional indices can stand alone as a reliable indication of reef
References
[1]
C. R. Wilkinson, Status of Coral Reefs of the World 2008, GCRMN, Townsville, Australia, 2008.
[2]
T. P. Hughes, A. H. Baird, D. R. Bellwood et al., “Climate change, human impacts, and the resilience of coral reefs,” Science, vol. 301, no. 5635, pp. 929–933, 2003.
[3]
D. Gulko, “NCRI coral reef monitoring methodology comparison chart, (Attached to the Proceedings of the International Conference on Scientific Aspects of Coral Reef Assessment, Monitoring and Restoration),” Bulletin of Marine Sciences, vol. 69, no. 2, 2001.
[4]
S. English, C. Wilkinson, and V. Baker, Survey Manual for Tropical Marine Resources, Australian Institute of Marine Science, Townsville, Australia, 2nd edition, 1997.
[5]
C. Birkeland, “Introduction,” in Life and Death of Coral Reefs, C. Birkeland, Ed., pp. 1–12, Chapman & Hall, New York, NY, USA, 1996.
[6]
J. C. Jameson and M. V. Erdmann, “Charting a course toward diagnostic monitoring: a continuing review of coral reef attributes and a research strategy for creating coral reef indexes of biotic integrity,” Bulletin of Marine Science, vol. 69, no. 2, pp. 701–744, 2001.
[7]
S. A. McKenna, R. H. Richmond, and G. Roos, “Assessing the effects of sewage on coral reefs: developing techniques to detect stress before coral mortality,” Bulletin of Marine Science, vol. 69, no. 2, pp. 517–523, 2001.
[8]
D. L. Santavy, J. K. Summers, V. D. Engle, et al., “The condition of coral reefs in South Florida (2000) using coral disease and bleaching as indicators,” Environmental Monitoring and Assessment, vol. 100, no. 1–3, pp. 129–152, 2005.
[9]
E. Pennisi, “Brighter prospects for the world's coral reefs?” Science, vol. 277, no. 5325, pp. 491–493, 1997.
[10]
M. Adjeroud, Y. Chancerelle, M. Schrimm et al., “Detecting the effects of natural disturbances on coral assemblages in French Polynesia: a decade survey at multiple scales,” Aquatic Living Resources, vol. 18, no. 2, pp. 111–123, 2005.
[11]
H. Sweatman, A. Cheal, G. Coleman, et al., Long-Term Monitoring of the Great Barrier Reef: Status Report Number 4, Australian Institute of Marine Science, Townsville, Australia, 2000.
[12]
G. Hodgson and J. Liebeler, The Global Coral Reef Crisis: Trends and Solutions, Reef Check, Los Angeles, Calif, USA, 2002.
[13]
B. Stobart, R. Buckley, L. Leclair, et al., “Aldabra: monitoring the path to recovery,” in Coral Reef Degradation in the Indian Ocean Status Report 2002 CORDIO, O. Lind?n, D. Souter, D. Wilhelmsson, and D. Obura, Eds., pp. 232–247, University of Kalmar, Kalmar, Sweden, 2002.
[14]
O. Ben-Tzvi, Y. Loya, and A. Abelson, “Deterioration Index (DI): a suggested criterion for assessing the health of coral communities,” Marine Pollution Bulletin, vol. 48, no. 9-10, pp. 954–960, 2004.
[15]
C. J. Krebs, Ecology the Experimental Analysis of Distribution and Abundance, Harper and Row, New York, NY, USA, 5th edition, 2001.
[16]
UNEP/RAMOGE, Manual on the Biomarkers Recommended for the MED POL Biomonitoring Programme, UNEP, Athens, Greece, 1999.
[17]
R. H. Jensen and J. F. Leary, “Mutagenesis as measured by flow cytometry and cell sorting,” in Flow Cytometry and Sorting, M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Eds., pp. 553–562, Willey-Liss, New York, NY, USA, 1990.
[18]
S. Dailianis, G. P. Domouhtsidou, E. Raftopoulou, et al., “Evaluation of neutral red retention assay, micronucleus test, acetylcholinesterase activity and a signal transduction molecule (cAMP) in tissues of Mytilus galloprovincialis (L.), in pollution monitoring,” Marine Environmental Research, vol. 56, no. 4, pp. 443–470, 2003.
[19]
I. S. Grover and S. Kaur, “Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays,” Mutation Research, vol. 426, no. 2, pp. 183–188, 1999.
[20]
C. Bolognesi, E. Landini, P. Roggieri, et al., “Genotoxicity biomarkers in the assessment of heavy metal effects in mussels: experimental studies,” Environmental and Molecular Mutagenesis, vol. 33, no. 4, pp. 287–292, 1999.
[21]
V. Bresler, L. Fishelson, and A. Abelson, “Determination of primary and secondary responses to environmental stressors and biota health,” in Assessment and Management of Environmental Risk, I. Linkov and J. M. Palma Olivera, Eds., pp. 57–70, Kluwer Dodrecht, 2001.
[22]
K. Al-Sabti and J. Hardig, “Micronucleus test in fish for monitoring the genotoxic effects of industrial waste products in the Baltic sea, Sweden,” Comparative Biochemistry and Physiology, vol. 97, no. 1, pp. 179–182, 1990.
[23]
T. Cavas and S. Ergene-Gozukara, “Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent,” Mutation Research, vol. 538, no. 1-2, pp. 81–91, 2003.
[24]
T. Nishikawa, M. Haresaku, K. Adachi, et al., “Study of a rat skin in vivo micronucleus test: data generated by mitomycin C and methyl methanesulfonate,” Mutation Research, vol. 444, no. 1, pp. 159–166, 1999.
[25]
L. E. Moore, M. L. Warner, A. H. Smith, et al., “Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells,” Environmental and Molecular Mutagenesis, vol. 27, no. 3, pp. 176–184, 1996.
[26]
S. Pavanello and E. Clonfero, “Biological indicators of genotoxic risk and metabolic polymorphisms,” Mutation Research, vol. 463, no. 3, pp. 285–308, 2000.
[27]
H. C. Schr?der, C. Chauvin, S. Lauenroth, et al., “Application of fast micromethod for determination of DNA damage and repair in cell and tissue samples,” in Development of Methods for Determination of Radiosensitivity, H. C. Schroder and W. E. G. Muller, Eds., Mathematisch-Naturwissenschaftliche Klasse Sitzungsberichte, Vol. 10, pp. 15–24, 1998.
[28]
L. R. Shugart, “Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay,” Aquatic Toxicology, vol. 13, no. 1, pp. 43–52, 1988.
[29]
V. Bresler, V. Bissinger, A. Abelson et al., “Marine molluscs and fish as biomarkers of pollution stress in littoral regions of the Red Sea, Mediterranean Sea and North Sea,” Helgoland Marine Research, vol. 53, no. 3, pp. 219–243, 1999.
[30]
V. Bresler, A. Abelson, L. Fishelson, et al., “Marine molluscs in environmental monitoring. I. Cellular and molecular responses,” Helgoland Marine Research, vol. 57, no. 3-4, pp. 157–165, 2003.
[31]
G. O. Klobucar, M. Pavlica, R. Erben, et al., “Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments,” Aquatic Toxicology, vol. 64, no. 1, pp. 15–23, 2003.
[32]
Z. Darzynkiewicz, “Mammalian cell-cycle analysis,” in The Cell Cycle: A Practical Approach, P. Fantes and R. Brooks, Eds., pp. 45–68, Oxford University Press, Oxford, UK, 1993.
[33]
Z. Darzynkiewicz, “Simultaneous analysis of cellular RNA and DNA content,” Methods in Cell Biology, vol. 41, pp. 401–420, 1994.
[34]
N. Bihari, B. Hamer, Z. Jaksic, et al., “Application of alkaline elution, Fast Micromethod and flow cytometry in detection of marine contamination,” Cellular and Molecular Biology, vol. 48, no. 4, pp. 373–377, 2002.
[35]
R. Batel, Z. Jaksic, N. Bihari et al., “A microplate assay for DNA damage determination (fast micromethod) in cell suspensions and solid tissues,” Analytical Biochemistry, vol. 270, no. 2, pp. 195–200, 1999.
[36]
Z. Jak?i? and R. Batel, “DNA integrity determination in marine invertebrates by Fast Micromethod?,” Aquatic Toxicology, vol. 65, no. 4, pp. 361–376, 2003.
[37]
F. Galgani, G. Bocquene, and Y. Cadiou, “Evidence of variation in cholesterase activity in fish along a pollution gradient in the North Sea,” Marine Ecology Progress Series, vol. 19, pp. 17–82, 1992.
[38]
G. Geyer, Ultrahistochemistry, Histochemische Arbaitsvorschiften für die Elektronmikroskopie, Gustav Fischer Verlag, Jena, Germany, 1973.
[39]
C. J. F. Van Noorden and W. M. Frederiks, Enzyme Histochemistry: A Laboratory Manual of Current Methods, Royal Microscopy Society, Oxford University Press, New York, NY, USA, 1992.
[40]
V. Bresler, E. Belyaeva, and M. Mozhayeva, “A comparative study on the system of active transport of organic acids in Malpighian tubules of insects,” Journal of Insect Physiology, vol. 36, no. 4, pp. 259–270, 1990.
[41]
J. Veron, Corals of the World, Australian Insititute of Marine Science, Townsville, Australia, 2000.
[42]
Y. Loya, “Community structure and species diversity of hermatypic corals at Eilat, Red Sea,” Marine Biology, vol. 13, no. 2, pp. 100–123, 1972.
[43]
E. H. Simpson, “Measurement of diversity,” Nature, vol. 163, no. 4148, p. 688, 1949.
[44]
C. E. Shannon and W. Weaver, The Mathematical Theory of Communications, University of Illinois Press, Urbana, Ill, USA, 1948.
[45]
E. R. Pielou, “Species-diversity and pattern-diversity in the study of ecological succession,” Journal of Theoretical Biology, vol. 10, no. 2, pp. 370–383, 1966.
[46]
N. Knowlton, “The future of coral reefs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5419–5425, 2001.
[47]
S. Bonacci, M. A. Browne, A. Dissanayake et al., “Esterase activities in the bivalve mollusc Adamussium colbecki as a biomarker for pollution monitoring in the Antarctic marine environment,” Marine Pollution Bulletin, vol. 49, no. 5-6, pp. 445–455, 2004.
[48]
G. I. Klobucar, M. Pavlica, R. Erben, et al., “Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments,” Aquatic Toxicology, vol. 64, no. 1, pp. 15–23, 2003.
[49]
N. Epstein, R. P. M. Bak, and B. Rinkevich, “Implementation of a small-scale “no-use zone” policy in a reef ecosystem: eilat's reef-lagoon six years later,” Coral Reefs, vol. 18, no. 4, pp. 327–332, 1999.