全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Application of Ensemble Models in Credit Scoring Models

DOI: 10.1177/2278533718765531

Keywords: Credit scoring model,probability of default,ensemble methods,accuracy,precision

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract Loan default is a serious problem in banking industries. Banking systems have strong processes in place for identification of customers with poor credit risk scores; however, most of the credit scoring models need to be constantly updated with newer variables and statistical techniques for improved accuracy. While totally eliminating default is almost impossible, loan risk teams, however, minimize the rate of default, thereby protecting banks from the adverse effects of loan default. Credit scoring models have used logistic regression and linear discriminant analysis for identification of potential defaulters. Newer and contemporary machine learning techniques have the ability to outperform classic old age techniques. This article aims to conduct empirical analysis on publically available bank loan dataset to study banking loan default using decision tree as the base learner and comparing it with ensemble tree learning techniques such as bagging, boosting, and random forests. The results of the empirical analysis suggest that the gradient boosting model outperforms the base decision tree learner, indicating that ensemble model works better than individual models. The study recommends that the risk team should adopt newer contemporary techniques to achieve better accuracy resulting in effective loan recovery strategies

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133