全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Holocene water mass changes in the Labrador Current

DOI: 10.1177/0959683618824752

Keywords: alkenones,benthic foraminifera,Holocene,Labrador Current,Labrador Sea,primary productivity,West Greenland Current

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Labrador Current is part of the anticlockwise subpolar gyre and plays a major role in the formation of North Atlantic Deep Water. It is influenced by the West Greenland and Baffin currents supplying warmer Atlantic and cold polar waters, respectively. During the early Holocene, at the final stage of the last deglaciation, meltwater and iceberg discharge caused highly variable conditions in the Labrador Current. In order to assess its sensitivity to such freshening, this study provides a well-resolved Holocene paleoclimatic record from the Labrador Shelf. Based on benthic foraminiferal faunal and alkenone biomarker analyses, we differentiated four distinct climatic periods in the western Labrador Sea. From 8.9 to 8.6 ka BP, the Labrador Shelf was dominated by polar water outflow from Baffin Bay and covered by perennial sea ice. Between 8.6 and 7.4 ka BP, a strong subsurface inflow of warmer Atlantic water masses is ascribed to an intensification and redirection of the West Greenland Current. At 7.4 ka BP, the decreased influence of Atlantic water masses on the Labrador Shelf marks the establishment of winter convection leading to the formation of Labrador Sea Water in the central basin. Concurrently, an intensified polar water outflow through the Canadian Gateways strengthened the inner Labrador Current, and higher primary productivity suggests longer spring blooms because of a shorter sea-ice season during the Holocene Thermal Maximum. In the late Holocene after 3 ka BP, periodic fluctuations of primary productivity may tentatively be correlated with stronger and weaker northwesterly winds

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133