Comparable information on the status of natural resources across large geographic and human impact scales provides invaluable context to ecosystem-based management and insights into processes driving differences among areas. Data on fish assemblages at 39 US flag coral reef-areas distributed across the Pacific are presented. Total reef fish biomass varied by more than an order of magnitude: lowest at densely-populated islands and highest on reefs distant from human populations. Remote reefs (<50 people within 100?km) averaged ~4 times the biomass of “all fishes” and 15 times the biomass of piscivores compared to reefs near populated areas. Greatest within-archipelagic differences were found in Hawaiian and Mariana Archipelagos, where differences were consistent with, but likely not exclusively driven by, higher fishing pressure around populated areas. Results highlight the importance of the extremely remote reefs now contained within the system of Pacific Marine National Monuments as ecological reference areas. 1. Introduction Recent studies of isolated coral reefs, as well as of historical records, have contributed to a growing awareness of how substantially altered reef fish communities now are around human population centers [1–6]. The greatest difference between populated areas and what are assumed to be largely intact reef systems, at extremely remote locations, tends to be in the abundance and size of large predatory fishes such as sharks and jacks. Those groups often comprise a large portion of total fish biomass estimated from visual surveys at remote coral reefs [1, 2, 7], but are infrequently encountered and/or constitute a small portion of biomass on reefs close to even fairly small human populations [8]. Human impacts can also be substantial at lower trophic levels, particularly among species targeted by coral reef fisheries [8], and the depletion of predators can also lead to what appear to be cascading effects on prey species [7, 9, 10]. There is substantial evidence that relatively low levels of fishing can have profound impacts on coral reef fish assemblages, and that fishing is very likely a major contributor to the differences in reef fish communities between remote and populated coral reefs [8, 11–15], but anthropogenic impacts can also manifest themselves through habitat or environmental degradation which in turn reduces the capacity of affected reefs to support abundant marine life [16, 17]. While there is a developing consensus that reef fish populations around human population centers tend to be substantially different to those
References
[1]
A. M. Friedlander and E. E. DeMartini, “Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators,” Marine Ecology Progress Series, vol. 230, pp. 253–264, 2002.
[2]
S. A. Sandin, J. E. Smith, and J. E. Smith, “Baselines and degradation of coral reefs in the Northern Line Islands,” PLoS One, vol. 3, no. 2, Article ID e1548, 2008.
[3]
M. J. H. Newman, G. A. Paredes, E. Sala, and J. B. C. Jackson, “Structure of Caribbean coral reef communities across a large gradient of fish biomass,” Ecology Letters, vol. 9, no. 11, pp. 1216–1227, 2006.
[4]
C. Stevenson, L. S. Katz, and L. S. Katz, “High apex predator biomass on remote Pacific islands,” Coral Reefs, vol. 26, no. 1, pp. 47–51, 2007.
[5]
C. D. Stallings, “Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities,” PLoS One, vol. 4, no. 5, Article ID e5333, 2009.
[6]
J. B. C. Jackson, “Reefs since Columbus,” Coral Reefs, vol. 16, no. 1, pp. S23–S32, 1997.
[7]
E. E. DeMartini, A. M. Friedlander, S. A. Sandin, and E. Sala, “Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific,” Marine Ecology Progress Series, vol. 365, pp. 199–215, 2008.
[8]
I. D. Williams, W. J. Walsh, R. E. Schroeder, A. M. Friedlander, B. L. Richards, and K. A. Stamoulis, “Assessing the importance of fishing impacts on Hawaiian coral reef fish assemblages along regional-scale human population gradients,” Environmental Conservation, vol. 35, no. 3, pp. 261–272, 2008.
[9]
N. A. J. Graham, R. D. Evans, and G. R. Russ, “The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef,” Environmental Conservation, vol. 30, no. 2, pp. 200–208, 2003.
[10]
N. K. Dulvy, N. V. C. Polunin, A. C. Mill, and N. A. J. Graham, “Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 61, no. 3, pp. 466–475, 2004.
[11]
S. Jennings and N. V. C. Polunin, “Effects of fishing effort and catch rate upon the structure and biomass of Fijian reef fish communities,” Journal of Applied Ecology, vol. 33, no. 2, pp. 400–412, 1996.
[12]
T. D. Brewer, J. E. Cinner, A. Green, and J. M. Pandolfi, “Thresholds and multiple scale interaction of environment, resource use, and market proximity on reef fishery resources in the Solomon Islands,” Biological Conservation, vol. 142, no. 8, pp. 1797–1807, 2009.
[13]
J. E. Cinner and T. R. McClanahan, “Socioeconomic factors that lead to overfishing in small-scale coral reef fisheries of Papua New Guinea,” Environmental Conservation, vol. 33, no. 1, pp. 73–80, 2006.
[14]
G. R. Russ and A. C. Alcala, “Marine reserves: rates and patterns of recovery and decline of predatory fish, 1983–2000,” Ecological Applications, vol. 13, no. 6, pp. 1553–1565, 2003.
[15]
T. R. McClanahan and N. A. J. Graham, “Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas,” Marine Ecology Progress Series, vol. 294, pp. 241–248, 2005.
[16]
S. K. Wilson, R. Fisher, and R. Fisher, “Habitat degradation and fishing effects on the size structure of coral reef fish communities,” Ecological Applications, vol. 20, no. 2, pp. 442–451, 2010.
[17]
G. P. Jones, M. I. McCormick, M. Srinivasan, and J. V. Eagle, “Coral decline threatens fish biodiversity in marine reserves,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8251–8253, 2004.
[18]
S. R. Holzwarth, E. E. DeMartini, R. E. Schroeder, B. J. Zgliczynski, and J. L. Laughlin, “Sharks and jacks in the Northwestern Hawaiian Islands from towed-diver surveys 2000–2003,” Atoll Research Bulletin, no. 543, pp. 257–279, 2006.
[19]
R. E. Schroeder, M. S. Trianni, K. A. Moots, et al., “Status of fishery target species on coral reefs in the Mariana Archipelago,” in Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 2006.
[20]
P. Houk and J. Starmer, “Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands,” Coral Reefs, vol. 29, no. 1, pp. 59–70, 2010.
[21]
J. Miller, J. Maragos, R. Brainard, et al., “The state of Coral Reef Ecosystems of the Pacific Remote Island Areas,” in The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, J. E. Waddell and A. M. Clarke, Eds., NOAA Technical Memorandum NOS NCCOS 73, pp. 353–386, NOAA/NCOS Center for Coastal Monitoring and Assessment's Biogeography Team, Silver Spring, Md, USA, 2008.
[22]
M. G. Sabater and B. P. Carroll, “Trends in reef fish population and associated fishery after three millennia of resource utilization and a century of socio-economic changes in American Samoa,” Reviews in Fisheries Science, vol. 17, no. 3, pp. 318–335, 2009.
[23]
P. Craig, A. Green, and F. Tuilagi, “Subsistence harvest of coral reef resources in the outer islands of American Samoa: modern, historic and prehistoric catches,” Fisheries Research, vol. 89, no. 3, pp. 230–240, 2008.
[24]
S. O. Rohmann, J. J. Hayes, R. C. Newhall, et al., “The area of potential shallow-water tropical and subtropical coral ecosystems in the United States,” Coral Reefs, vol. 24, no. 3, pp. 370–383, 2005.
[25]
J. S. Ault, S. G. Smith, J. A. Bohnsack, J. Luo, D. E. Harper, and D. B. McClellan, “Building sustainable fisheries in Florida's coral reef ecosystem: positive signs in the dry tortugas,” Bulletin of Marine Science, vol. 78, no. 3, pp. 633–654, 2006.
[26]
R. Froese and D. Pauly, “FishBase,” World Wide Web electronic publication. 2010, http://www.fishbase.org/search.php.
[27]
M. Kulbicki, N. Guillemot, and M. Amand, “A general approach to length-weight relationships for New Caledonian lagoon fishes,” Cybium, vol. 29, no. 3, pp. 235–252, 2005.
[28]
Wm. L. Smith and M. T. Craig, “Casting the percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes,” Copeia, no. 1, pp. 35–55, 2007.
[29]
J. Dierking, Effects of the introduced predatory fish Cephalopholis argus on native reef fish populations in Hawaii, Ph.D. dissertation, Zoology Department, University of Hawaii at Manoa, Honolulu, Hawaii, USA, 2007.
[30]
S. Jennings, J. D. Reynolds, and N. V. C. Polunin, “Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories,” Conservation Biology, vol. 13, no. 6, pp. 1466–1475, 1999.
[31]
N. A. J. Graham, N. K. Dulvy, S. Jennings, and N. V. C. Polunin, “Size-spectra as indicators of the effects of fishing on coral reef fish assemblages,” Coral Reefs, vol. 24, no. 1, pp. 118–124, 2005.
[32]
SAS, JMP 8.0.2., SAS Institute Inc, Cary, NC, USA, 2009.
[33]
A. R. Henderson, “The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data,” Clinica Chimica Acta, vol. 359, no. 1-2, pp. 1–26, 2005.
[34]
M. A. MacNeil, N. A. J. Graham, N. V. C. Polunin, M. Kulbicki, R. Galzin, M. Harmelin-Vivien, and S. P. Rushton, “Hierarchical drivers of reef-fish metacommunity structure,” Ecology, vol. 90, no. 1, pp. 252–264, 2009.
[35]
C. Mellin, C. J. A. Bradshaw, M. G. Meekan, and M. J. Caley, “Environmental and spatial predictors of species richness and abundance in coral reef fishes,” Global Ecology and Biogeography, vol. 19, no. 2, pp. 212–222, 2010.
[36]
C. Syms and G. P. Jones, “Disturbance, habitat structure, and the dynamics of a coral-reef fish community,” Ecology, vol. 81, no. 10, pp. 2714–2729, 2000.
[37]
H. A. Malcolm, S. D.A. Smith, and A. Jordan, “Using patterns of reef fish assemblages to refine a habitat classification system for marine parks in NSW, Australia,” Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 20, no. 1, pp. 83–92, 2010.
[38]
M. G. Sabater and S. P. Tofaeono, “Scale and benthic composition effects on biomass and trophic group distribution of reef fishes in American Samoa,” Pacific Science, vol. 61, no. 4, pp. 503–520, 2007.
[39]
S. K. Wilson, R. Fisher, and R. Fisher, “Exploitation and habitat degradation as agents of change within coral reef fish communities,” Global Change Biology, vol. 14, no. 12, pp. 2796–2809, 2008.
[40]
T. R. McClanahan, N. A. J. Graham, J. M. Calnan, and M. A. MacNeil, “Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya,” Ecological Applications, vol. 17, no. 4, pp. 1055–1067, 2007.
[41]
G. R. Russ and A. C. Alcala, “Marine reserves: long-term protection is required for full recovery of predatory fish populations,” Oecologia, vol. 138, no. 4, pp. 622–627, 2004.
[42]
M. N. Lavides, N. V.C. Polunin, S. M. Stead, D. G. Tabaranza, M. T. Comeros, and J. R. Dongallo, “Finfish disappearances around Bohol, Philippines inferred from traditional ecological knowledge,” Environmental Conservation, vol. 36, no. 3, pp. 235–244, 2009.
[43]
D. R. Robertson, J. H. Choat, J. M. Posada, J. Pitt, and J. L. Ackerman, “Ocean surgeonfish Acanthurus bahianus. II. Fishing effects on longevity, size and abundance?” Marine Ecology Progress Series, vol. 295, pp. 245–256, 2005.
[44]
P. B. Adams, “Life-history patterns in marine fishes and their consequences for fisheries management,” Fishery Bulletin, vol. 78, no. 1, pp. 1–12, 1980.
[45]
G. R. Russ and A. C. Alcala, “Natural fishing experiments in marine reserves 1983–1993: roles of life history and fishing intensity in family responses,” Coral Reefs, vol. 17, no. 4, pp. 399–416, 1998.
[46]
S. Jennings and N. V. Polunin, “Biased underwater visual census biomass estimates for target-species in tropical reef fisheries,” Journal of Fish Biology, vol. 47, no. 4, pp. 733–736, 1995.
[47]
M. Kulbicki, “How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses,” Journal of Experimental Marine Biology and Ecology, vol. 222, no. 1-2, pp. 11–30, 1998.
[48]
F. A. Parrish and R. C. Boland, “Habitat and reef-fish assemblages of banks in the Northwestern Hawaiian Islands,” Marine Biology, vol. 144, no. 6, pp. 1065–1073, 2004.
[49]
I. D. Williams, W. J. Walsh, B. N. Tissot, and L. E. Hallacher, “Impact of observers' experience level on counts of fishes in underwater visual surveys,” Marine Ecology Progress Series, vol. 310, pp. 185–191, 2006.
[50]
A. A. Thompson and B. D. Mapstone, “Observer effects and training in underwater visual surveys of reef fishes,” Marine Ecology Progress Series, vol. 154, pp. 53–63, 1997.
[51]
M. Kulbicki, N. Cornuet, L. Vigliola, L. Wantiez, G. Moutham, and P. Chabanet, “Counting coral reef fishes: interaction between fish life-history traits and transect design,” Journal of Experimental Marine Biology and Ecology, vol. 387, no. 1-2, pp. 15–23, 2010.
[52]
J. Colvocoresses and A. Acosta, “A large-scale field comparison of strip transect and stationary point count methods for conducting length-based underwater visual surveys of reef fish populations,” Fisheries Research, vol. 85, no. 1-2, pp. 130–141, 2007.
[53]
T. J. Willis, R. B. Millar, and R. C. Babcock, “Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video,” Marine Ecology Progress Series, vol. 198, pp. 249–260, 2000.