全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A novel pedestrian detection algorithm based on data fusion of face images

DOI: 10.1177/1550147719845276

Keywords: Pedestrian detection,face recognition,data fusion,conjugate orthonormalized partial least squares

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to facilitate effective crime prevention and to issue timely warnings for the sake of public security, it is important to pinpoint the accurate position of particular pedestrians in crowded areas. Face recognition is the most popular method to detect and track pedestrian movement. During the face recognition process, feature classification ability and reliability are determined by the feature extraction methods. The primary challenge for researchers is to obtain a stable result while the targeted face is subject to varying conditions—particularly of illumination. To address this issue, we propose a novel pedestrian detection algorithm with multisource face images, which involves a face recognition algorithm based on the conjugate orthonormalized partial least-squares regression analysis under a complex lighting environment. Statistical learning theory is a research specialization of machine learning, especially applicable to small samples. Building upon the theoretical principles used to solve small-sample statistical problems, a new hypothesis has been developed; using this concept, we integrate the conjugate orthonormalized partial least-squares regression with the revised support vector machine algorithm to undertake the solution of the facial recognition problem. The experimental result proves that our algorithm achieves better performance when compared with other state-of-the-art methodologies, both numerically and visually

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133