|
- 2019
Biodegradable hybrid mesoporous silica nanoparticles for gene/chemoKeywords: Mesoporous silica nanoparticles,biodegradability,disulfide bond,hyaluronic acid,anticancer Abstract: Mesoporous silica nanoparticles have been extensively explored in anticancer nanomedicine due to their excellent biodegradability, which is one important focus in their further clinical translations. However, the traditional design concepts based on the functional modification with active groups cannot significantly improve the controlled drug release efficiency and anticancer effect. Herein, a molecularly organic–inorganic hybrid mesoporous silica nanoparticle (HMSN) nanocarrier coated with hyaluronic acid (HA) and polyethyleneimine (PEI) was constructed for the gene/chemo-synergetic therapy of breast cancer. Notably, HMSN with tumor-sensitive disulfide bond and targeting ligand HA can be decomposed when it encounters high concentration of glutathione (GSH) and hyaluronidase (HAase). The biodegradability of host molecules and the fast disintegration of the framework in tumor microenvironment can also accelerate the stimuli responsive release of cargos inside the pore space. Furthermore, the grafting of polyethyleneimine (PEI) could increase gene loading efficiency. From the above, the smart approach involves a combination of biodegradability and biological effect and results in synergetic antitumor effect of gene and chemical drug on breast cancer. All these findings demonstrated that HMSN/HA/PEI nanocarriers can be suitable for biomedical application, paving the way to fast development of multi-functional nano-biomedicine
|